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Turbulence in the convective boundary layer (CBL) uniformly heated from below 
and topped by a layer of uniformly stratified fluid is investigated for zero mean 
horizontal flow using large-eddy simulations (LES). The Rayleigh number is 
effectively infinite, the Froude number of the stable layer is 0.09 and the surface 
roughness height relative to the height of the convective layer is varied between 
lo-' and The LES uses a finite-difference method to integrate the three- 
dimensional grid-volume-averaged Navier-Stokes equations for a Boussinesq fluid. 
Subgrid-scale (SGS) fluxes are determined from algebraically approximated second- 
order closure (SOC) transport equations for which all essential coefficients are 
determined from the inertial-range theory. The surface boundary condition uses the 
Monin-Obukhov relationships. A radiation boundary condition a t  the top of the 
computational domain prevents spurious reflections of gravity waves. The simulation 
uses 160 x 160 x 48 grid cells. In  the asymptotic state, the results in terms of vertical 
mean profiles of turbulence statistics generally agree very well with results available 
from laboratory and atmospheric field experiments. We found less agreement with 
respect to horizontal velocity fluctuations, pressure fluctuations and dissipation 
rates, which previous investigations tend to overestimate. Horizontal spectra exhibit 
an inertial subrange. The entrainment heat flux at the top of the CBL is carried by 
cold updraughts and warm downdraughts in the form of wisps a t  scales comparable 
with the height of the boundary layer. Plots of instantaneous flow fields show a spoke 
pattern in the lower quarter of the CBL which feeds large-scale updraughts 
penetrating into the stable layer aloft. The spoke pattern has also been found in a few 
previous investigations. Small-scale plumes near the surface and remote from strong 
updraughts do not merge together but decay while rising through large-scale 
downdraughts. The structure of updraughts and downdraughts is identified by three- 
dimensional correlation functions and conditionally averaged fields. The mean 
circulation extends vertically over the whole boundary layer. We find that 
updraughts are composed of quasi-steady large-scale plumes together with transient 
rising thermals which grow in size by lateral entrainment. The skewness of the 
vertical velocity fluctuations is generally positive but becomes negative in the lowest 
mesh cells when the dissipation rate exceeds the production rate due to buoyancy 
near the surface, as is the case for very rough surfaces. The LES results are used to 
determine the root-mean-square value of the surface friction velocity and the mean 
temperature difference between the surface and the mixed layer as a function of the 
roughness height. The results corroborate a simple model of the heat transfer in the 
surface layer. 
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1. Introduction 
The convective boundary layer (CBL) in the atmosphere arises if turbulence 

generated by buoyancy due to upward heat flux from the surface dominates relative 
to turbulence generated by mean shear. The convective motion in the CBL exhibits 
a coherent structure of convective circulations composed of ‘ updraughts ’ and 
‘ downdraughts ’. Buoyant updraughts with warm air rising in rather narrow columns 
are surrounded by larger areas which are slowly sinking as downdraughts. The 
updraughts are called ‘plumes ’ if they extend from the warm surface far up into the 
boundary layer or ‘thermals’ if they are finite elements of buoyant fluid rising in 
the CBL (Turner 1986). These structures are important to transfer processes in the 
atmosphere (Wyngaard 1985; Chatfield & Brost 1987; Nieuwstadt & de Valk 1987). 
In this paper, we investigate the spatial structure and aspects of its time derivatives 
in the dry CBL for zero mean wind over a homogeneous surface and study the 
influence of surface roughnesses. For this purpose, we use large-eddy simulations 
(LES) based on the method described in Schumann et al. (1987). 

In the atmosphere, the CBL is capped by an inversion layer with stably stratified 
air above. As shown by Deardorff (1970) and others, the relevant scales for a CBL are 
the height zi of the inversion above the surface (or the height a t  which the vertical 
heat flux reaches its minimum value) and the convective velocity and temperature 

where g is the gravitational acceleration, p is the volumetric expansion coefficient 
(p x 1/T as a function of temperature T in air) and Q denotes the surface 
‘temperature flux ’, Q = (w‘T‘)~. The angle brackets denote ensemble mean values. 
These scales apply in particular for the ‘mixed layer ’ which extends approximately 
from 0.12, to 0.92,. The effect of the surface roughness height zo may be noticeable in 
the ‘ surface layer ’ between the mixed layer and the rough surface. In  the ‘ interfacial 
layer’ which encloses the inversion above the mixed layer, static stability represents 
an important additional parameter. 

Much is known about the CBL from observations in the atmosphere. The results 
of several field experiments are summarized in Caughey (1982). Our knowledge has 
also been increased by the laboratory experiments of Willis & Deardorff (1974, 1979)’ 
Deardorff & Willis (1985) and Adrian, Ferreira & Boberg (1986); the LES of 
Deardorff (1972, 1973, 1974), Schemm & Lipps (1976), Moeng (1984), Moeng & 
Wyngaard (1986), Nieuwstadt & de Valk (1987), Schumann et al. (1987), and Mason 
(1987); and by the second- and third-order closure models of Mellor & Yamada 
(1974), Zeman & Lumley (1976), Andre et al. (1978), Chen & Cotton (1983), and 
Finger & Schmidt (1986). As a result, we have a fairly complete knowledge of the 
vertical profiles of second- and third-order moments of turbulent fluctuations, 
horizontal spectra and of probability distributions of vertical velocity and 
temperature fluctuations a t  a given height. Some discussion continues on the 
magnitude of horizontal velocity fluctations (Deardorff & Willis 1985) and the profile 
of velocity skewness (w3) / (wz ) i  (Hunt, Kaimal & Gaynor 1988) and we shall add 
new information to these discussions. 

The spatial structure of the updraughts and downdraughts has been observed in 
the atmosphere as summarized by Kaimal et al. (1976), Lenschow & Stephens (1980), 
Wilczak & Tillman (1980), Greenhut & Khalsa (1982, 1987), Grossman (1982, 1984), 
Crum, Stull & Eloranta (1987) and others. Also the LES results, in particular those 
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of Deardorff (1972) have given insight into the spatial and temporal structure. Some 
controversy can be traced in the older literature on whether updraughts are plumes 
with a continuous vertical structure or thermals rising intermittently like bubbles in 
the CBL (Ludlam & Scorer 1953). According to the more recent studies, updraughts 
are mainly composed of plumes which often extend through the depth of the well- 
mixed layer up to the capping inversion. Thermals rising from the surface either 
merge together into plumes or are destroyed in the lower part of the boundary layer 
(Lenschow & Stephens 1980; Wilczak & Tillman 1980). The plumes have highIy 
convoluted turbulent boundaries with strong lateral entrainment (Crum et al. 1987). 
The rising air spreads out laterally as it reaches the inversion base, produces a dome- 
like depression at  the interface, and returns as a downdraught along the sides of the 
plumes. The domes at  tops of penetrating plumes have been clearly observable by 
radar (Konrad 1970) and typically have separation distances of order xi. 
Downdraughts transport fluid components from above the inversion down to heights 
of order 0.252, and less (Grossman 1984). Details of the entrainment process and the 
relative importance of turbulence and waves are discussed in Carruthers & Moeng 
(1987) and earlier papers cited therein. 

Flow visualisations of laboratory convection (Willis & Deardorff 1979), and the 
LES of Deardorff (1972) and in particular Mason (1987) confirm these findings for the 
upper part of the CBL but indicate that a coherent polygonal ‘spoke’ pattern arises 
in the lower half of the CBL as has been observed in less turbulent states for moderate 
Rayleigh numbers (2 x lo5) in high-Prandtl-number Rayleigh-Be’nard convection by 
Busse & Whitehead (1974). Plumes or thermals rise from cross-points or ‘hubs’ 
(Willis & Deardorff 1979) of the spokes. The spokes form polygonal open cells similar 
in structure to but a t  much smaller scale than the open mesoscale cellular cloud 
pattern (Krishnamurti 1975; Busse 1978). There is only a little evidence available 
that shows polygonal spoke patterns in the atmosphere (Woodcock & Wyman 1947 ; 
Lyons & Pease 1972 ; Webb 1977 ; Wilczak & Tillman 1980 ; Grossman 1982) (see also 
the discussion in Willis & Deardorff 1979). As the laboratory investigations of Willis 
& Deardorff (1979) are valid for a Rayleigh number below lo9 while the Rayleigh 
number in a typical atmospheric CBL is greater than 10l6 it is not clear whether these 
spoke patterns are realistic features of the atmosphere. 

It remains to be shown whether the simulations of Mason (1987) apply to an 
atmospheric CBL because he uses rather large subgrid-scale (SGS) diffusivities (in 
comparison to Lilly ’s 1967 theory) which might effectively represent a limited 
Rayleigh number. He observes an intensification of the spoke pattern for increasing 
diffusivity. Mason & Callen (1986) and Mason (1987) suggest that large SGS 
diffusivities are necessary to avoid excessive finite-difference errors in such LES. 
However, Mason & Thomson (1987), in a LES of the neutral planetary boundary 
layer, find the results for small SGS diffusivities most satisfactory. 

The quantitative structure of updraughts and downdraughts of the CBL has been 
investigated by conditional sampling (Coulman 1970 ; Lenschow & Stephens 1980 ; 
Greenhut & Khalsa 1982, 1987; Mahrt & Paumier 1984; Grossman 1984; Wilczak & 
Businger 1983, 1984; Young 1988 and Hunt et al. 1988). For example, Greenhut & 
Khalsa (1987) analysed flight data and identified updraughts (downdraughts) at 
flight path fractions where the vertical velocity exceeds a certain threshold value in 
magnitude along a certain minimum length of the flight path. They report statistics 
on the horizontal diameters of updraughts and downdraughts, horizontal distances 
between these structures, averages of vertical velocity and temperature within these 
events and the individual contributions to vertical fluxes by these structures. 
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However, the vertical structure of convection cannot be determined from flight data 
obtained with a single airplane ; this would require simultaneous measurements at 
several heights. Nor do the previous analyses provide information on the temporal 
structure and on horizontal motions and horizontal fluxes associated with 
updraughts. Such information will be determined in this paper. Previous conditional- 
sampling results depend strongly on the sampling criteria. We shall introduce a 
multidimensional conditional-sampling technique which is only weakly dependent 
on the parameters of the sampling criterion. 

The influence of sampling criteria is totally avoided in spatial correlation functions 
but such functions do not distinguish between updraughts and downdraughts. The 
available correlation measurements are restricted to one-dimensional correlation 
functions with respect to either horizontal (Deardorff & Willis 1985) or vertical 
separation (Hunt 1984). In  this paper, we will determine three-dimensional 
correlation functions. 

Little is known about the influence of surface roughness on the CBL in the absence 
of mean wind. It is generally assumed (Wyngaard 1985) that the effect of the surface 
roughness is small with respect to the mixed layer inside the CBL. However, surface 
roughness does influence the turbulent exchange processes a t  the surface itself. In a 
recent paper, Schumann (1988) has set up a model for the surface layer of the CBL. 
This model is based on the concept of conditional averaging. It requires data on 
horizontal motions in the surface layer induced by updraughts and on the related 
momentum and vertical heat flux and spatial structure of the pressure in the surface 
layer. The present analysis arose from a need to provide quantitative data on these 
properties. Schumann had to estimate these data by calibrating the results from 
observed mean values of the turbulent fluctuations. From the model he determined 
the mean friction velocity at the surface related to the thermal motion and the mean 
temperature difference between the mixed layer and the surface. In  this paper we 
shall verify these results. 

In  the next section we shall describe the LES method and the initial and boundary 
conditions used for the present study. This simulation is performed with a 
computational grid which fully exploits the capacity of a CRAY-XMP computer. 
Section 3 describes the results. The computed mean profiles of turbulent fluctuations 
and horizontal spectra will be compared to results obtained in experiments and 
earlier simulations. We then determine the three-dimensional structure of the CBL 
in terms of instantaneous flow fields, three-dimensional correlation functions, and 
conditionally averaged fields related to updraughts and downdraughts. Finally we 
shall determine the influence of surface roughnesses by means of a parameter study. 
Section 4 summarizes the conclusions and relates them to earlier studies. 

2. The large-eddy simulation method 
The method (the MESOSCOP program) used in this paper has been developed by 

Schmidt (1988) and Schumann et al. (1987). Except for the SGS model, it is described 
in Schumann et al. (1987) together with verifying results in comparison to the 
laboratory experiments of Deardorff & Willis (1985) and several other test cases. 
Here, we repeat the essential features of the method and describe the SGS-model. 

2.1. The basic equations 
The basic equations describe the mass and momentum balances and the first law of 
thermodynamics in terms of grid-averaged velocities ui = (u, w, w) and temperature 
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T as a function of the coordinates xi = (x, y ,  z )  and of time t .  The Oberbeck- 
Boussinesq approximation is used, i.e. density p is assumed to  be constant ex- 
cept for buoyancy. In this approximation, temperature T corresponds to the 
potential temperature in the atmospheric boundary layer (Busse 1978). The balance 
eauations are 

( 2 )  

Here, p is the pressure, g is the gravitational acceleration, /3 = - ( a p / a T ) / p  is the 
volumetric expansion coefficient, v and p are the constant molecular diffusivities of 
momentum and heat (included here for completeness only). The coordinate xs = .z 
points vertically upwards. The bar denotes the average over a computational grid 
cell and the double primes the deviations thereof. 

Properly, one should be more precise in defining the grid average and distinguish 
between volume and surface mean values as in Schumann (1975).  However, in the 
present study we shall use equal grid spacings in all three directions and fine 
resolution so that such details do not matter. Coriolis forces are neglected because 
they have very small effects a t  zero mean wind in the CBL (Moeng & Wyngaard 
1986). 

2.2. The subgrid-scale model 

The subgrid-scale (SGS) fluxes are - _  approximated in terms of the resolved fields and 
the SGS kinetic energy E" = uT2/2, for which we integrate the closed model 

The turbulent heat and momentum fluxes and their respective anisotropic 

are determined from the following set of algebraically approximated second-order 
closure (SOC) equations : 

- 
- aT E"1- 

0 = - ( 1  - c G T ) ; E - +  ( 1  - C B T )  p g F a i 3 - c R T  -24; T", 
8% 1 

This set of SOC equations results from the more complete system deduced by Gibson 
& Launder (1976) by using arguments as given in Mellor & Yamada (1974),  
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Model proposed by 
D SL S DM Ma GS ss 

0.042 0.0856 c, 0.0646 0.0645 0.0667 0.10 - 
- ‘ern 0.7 0.7 0.7 0.7 0.634 0.845 

cs 0.14 0.14 0.143 0.194 0.16/0.46 0.104 0.165 
cy 0.161 0.161 0.167 - 0.107 0.204 

cST 0.221 0.221 0.227 0.336 lc,/2c, 0.166 0.255 

- 

- - - cCT 0.42 0.58 1.2 2.02 

TABLE 1. Coefficients of SGS models. The abbreviations denote the various models proposed by 
Deardorff (1974) : D; Schemm & Lipps (1976) : SL; Sommeria (1976) : S; Deardorff (1980) and 
Moeng (1984) : DM ; Mason (1987) : Ma;  Grotzbach & Schumann (1979) : GS ; and this paper: SS. 
Mason (1987) varied the coefficient values in a range as indicated. Further coefficient values used 
in the present paper: cGm = 0.55, cBm = 0.55, cGT = 0.50, cBT = 0.50, cRm = 3.50, cRT = 1.63, 
Csm = 0.2, cz = c,,. 

Sommeria (1976) and Schemm & Lipps (1976). In particular it is assumed that local 
time derivatives, advective fluxes and anisotropic production rates contribute little 
to the anisotropic components of the fluxes. These approximations can be justified 
by scale analysis (Schemm & Lipps 1976). The weakest point is probably the neglect 
of anisotropic production rates which will become important near the surface. 
However, for the CBL without mean shear, the present set of equations gives 
reasonable results even if applied not only to SGS contributions but to the total 
turbulent fluxes (Finger & Schmidt 1986). Since time derivatives and advective 
fluxes are neglected, these equations define a system of linear equations for the 
turbulent fluxes. The neglect of anisotropic shear contributions to the production 
rates decouples the horizontal fluxes from the vertical ones and the system can be 
solved explicitly in an effective manner, therefore. The explicit equations are given 
in Appendix A. 

The lengthscale 1 is prescribed as a function of height z above the surface and of 
the average mesh spacing d by 

1 = min(d,c,z), d = g(Alt:+Ay+Az). (10) 

Except for cam and c t ,  all essential model coefficients can be determined from the 
spectra of kinetic energy and temperature variance in the inertial-convective 
subrange of locally isotropic turbulence. I n  Appendix B we show this in detail and 
compare the results with previous proposals. The value of cam is taken from Deardorff 
(1974). For the reasons given in Appendix C, we use c1 = c,,,, unless stated otherwise. 
The standard values of the model coefficients are summarized in table 1. Deardorff 
(1980) and others have limited the lengthscale for strong static stability. We have 
tested such proposals but found them of little advantage in the context of SOC 
models in which stability effects enter directly into the SGS fluxes (Schmidt 
1988). 

2.3. The numerical solution method and boundary conditions 
The numerical integration scheme is described in Schumann et al. (1987). It is based 
on an equidistant staggered grid and finite-difference approximations. The 
momentum and continuity equations are approximated by second-order central 
differences in space which conserve mass, momentum and energy very accurately. 
Time integration is performed using the Adams-Bashforth scheme. The balance 
equations for temperature and for SGS kinetic energy are approximated by the 
second-order upwind-scheme of Smolarkiewicz (1984). A first-order upwind-scheme 
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would cause unacceptable numerical diffusion while the present scheme eIiminates 
first-order numerical diffusion. 

The computational domain extends horizontally and vertically over a finite 
domain of size X x X x 2. At the lateral boundaries, periodicity is assumed. At the 
top, free-slip boundary conditions are used for the horizontal velocity components ; 
the vertical derivative of temperature is prescribed according to the mean 
temperature profile; the vertical diffusive flux of SGS kinetic energy is set to zero; 
pressure and vertical velocity are connected by means of the radiation boundary 
condition of Bougeault (1983) and Klemp &, Durran (1983) which reduces the 
reflection of gravity waves. A t  the bottom, the heat flux &, determines the SGS flux 
a t  this surface, and the vertical fluxes of horizontal momentum are evaluated from 
the Monin-Obukhov relationships as described in Appendix D. The present study 
assumes equal values for the roughness heights which are effective for momentum 
and heat transfer. In the interior of the domain, pressure is computed by solving a 
discrete Poisson equation employing fast Fourier-transform algorithms. 

2.4. Initial conditions and computational aspects 
The initial temperature profile represents a constant-temperature mixed layer 
topped by a layer of uniform stability where d(T)/dz > 0 is a constant. We intend 
to present all results non-dimensionally in terms of the convective scales, see (1). We 
expect to achieve an asymptotic state after a time of order 6zi/w, when the 
normalized turbulence profiles become st,ationary. However, the time-dependence of 
z, makes it unsuitable for normalizing the initial conditions and time axis. Therefoie, 
we design the initial conditions such that we obtain a boundary-layer height ,of 
approximately zIo = 1600 m at  the time of evaluation and use this height for 
normalization, while the final value of zi is unknown. From preliminary runs we 
found that an initial mixed-layer height of 1350 m results in zi z zio a t  the final time. 
The convective scales related to &, and zio and the non-dimensional time t ,  are defined 

The Brunt-Vgisiilii frequency N = (Pgd(T)/dz)i in the stable layer can be used to 
define a ' convective Froude number ' 

FT = W*O/(NZiO). (12) 

The values selected are typical for a sunny day in southern Germany: &, = 
0.06 K ms-', zio = 1600 m, d(T)/dz = 0.003 K m-l, T, = 650T,, x 26.6 "C, p = 
1/300 K-l, g = 9.81 m s - ~ ,  v = 15 x m2 s-l, zo = 10-4zi0. 
These values imply w , ~  = 1.46 m s-l, T,, = 0.041 K, N = 0.0099 s-l, Fr = 0.0922. 
Since the Reynolds number w*ozio/v = 1.6 x loll and the Rayleigh number Ra = 
(PggT, z:)/(v,u) = 1.7 x 10l6 are very high, molecular diffusivities are unimportant and, 
hence, the results depend solely on zi/zo and Fr as independent characteristic 
numbers. 

The computational domain extends horizontally over a domain of size X = 
8000 m = 5zi, in the x- and y-directions, and vertically from height z = 0 to z = Z = 
2400 m = 1 . 5 . ~ ~ ~ .  Thus the domain accommodates several plumes at a given time. The 
vertical extent is small but this is permissible because of the radiation boundary 
condition at the top. 

The initial temperature and velocity fields contain disturbances in terms of 
random numbers r equally distributed between -0.5 and 0.5 to initiate the 

m2 s-l, ,u = 21.4 x 
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convective motion and the initial value for the SGS energy is set to an arbitrary but 
positive function : 

T=T,+O.lr(l-z/zil)T,,; w = O . 1  r ( l - z / ~ ~ ~ ) w , ~  for O < z < z i l \  

w = 0 for z > zil, d(T) T =  T,+(z-zil)-’ 
dz ’ 

E” = 0.1 W2,,(1-Z/Z), 

where zil = 0.844z,,. The initial velocity field is then adjusted to the continuity 
equation using the gradient of a pressure which satisfies the corresponding Poisson 
equation (Schumann et al. 1987). 

The number of grid cells is 160 x 160 x 48 cells, where the last number counts the 
grid cells in the vertical direction. Thus the grid width is d = zi0/32 = 50 m in all 
three directions. The time step At is set to 0.0025~i0/w,0, which is a little less than the 
maximum time step allowed for numerical stability according to linear stability 
analysis. 

The code is run on a CRAY-XMP using 8 MW (Million words) of main storage. The 
total integration up to t, = 7 requires 65000 s of computation time and includes 2800 
time steps. The total amount of data required per time step amounts to 34 MW and 
thus exceeds the available main storage. Therefore, the data are split into two- 
dimensional (x, z )  slabs which are swapped between main storage and secondary 
storage. The programming of the input/output operations turns out to be the crucial 
aspect of such simulations. Without special treatment, the input/output waiting 
time exceeds the computation time by an order of magnitude and this would make 
such simulations economically unfeasible. We use either direct access to a fast 
secondary storage device or asynchronous buffered sequential input/output to 
transfer the integration fields between disks and main storage. The actual selection 
depends on priority considerations of the job stream on our computer. In  both cases, 
the input/output waiting time amounts to less than 7% of the computation time, 
which is quite acceptable. 

3. Results 
3.1. Mean projiles 

We first compare results in terms of vertical profiles with pr,evious investigations to 
show that the simulations give realistic results for a CBL. Mean values over all points 
in one horizontal plane approximate ensemble mean values and are denoted by 
brackets, e.g. ( f )  = (f)(z) denotes a vertical mean profile of any quantity f. Primes 
denotes either local deviations from these mean values or root-mean-square (r.m.s.) 
values. For example, T’(z) represents ( ( T -  (T) )2 ) i .  The inversion height zi is 
determined in the model as that height where the vertical heat flux assumes its 
(negative) minimum. This height increases approximately linearly with time from 
zi = 0 . 8 7 5 ~ ~ ~  initially to zi = 1 . 0 3 ~ ~ ~  a t  time t, = 7. 

Figure 1 shows the mean temperature profile a t  the initial time and a t  t ,  = 6. The 
increase in normalized temperature during the course of integration amounts to 
approximately 7.0 in the mixed layer. It is thus only a few percent larger than the 
value t, which one expects if the constant heat input is equally distributed over the 
height xi,. The larger temperature increase is due to heat stored initially above the 
mixed layer and entrained from there downwards. As a consequence of this 
entrainment, a sharp local inversion has been formed with enhanced stability. The 
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surface temperature 8,, which results from equation (D2), is much bigger than the 
mixed layer temperature 8,. We shall come back to this issue in 33.6. 

The vertical turbulent heat flux is plotted versus height in figure 2 in comparison 
to laboratory and atmospheric data. The bars indicate that the scatter of the 
numerical results between non-dimensional times 6 and 7 is reasonably small. The 
general trend is as to  be expected. The vertical profile is close to linear up to 
x / x i  < 0.95. The linear profile implies a constant heating rate in the mixed layer and 
is thus an indicator for the stationarity of the turbulent state in the mixed layer. 
Near the inversion, the maximum negative entrainment heat flux amounts to  
- (0.17 f O.O2)w, T,. Field experiments show corresponding values varying between 
zero and -0.4, see Caughey & Palmer (1979) and Wilczak & Businger (1983). Our 
results are in close agreement with the LES result, -0.13, of Deardorff (1974) and 
-0.17 of Moeng (1984). Above the inversion, the heat flux is very small but positive; 
we shall discuss this aspect later. The dashed curve represents the SGS contribution. 
At the surface, the resolved vertical velocity vanishes and therefore all the flux is 
transported by SGS contributions a t  this level. Above this level, the mean SGS flux 
is very small. The SGS flux is negative near the inversion. We shall see that this is 
not consistent with the resolved heat flux at small scales, but the SGS flux is small 
so that this aspect is not important. For comparison we have included results from 
laboratory measurements (Deardorff & Willis 1985) and data from aircraft 
measurements (Lenschow, Wyngaard & Pennell 1980) for two strongly convective 
cases in which the value of the boundary-layer height is more than 250 times larger 

FIGURE 1.  Mean temperature (T ( z ) )  versus height at initial time (- - - - -) and at time t ,  = tzo,,/z,, = 6 
(-). For both profiles, the vertical coordinate is normalized with the inversion height zi at 
time t ,  = 6. The mean temperature 8, of the mixed layer and the mean surface temperature 8, are 
indicated for t ,  = 6. 
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FIGURE 2. Normalized vertical heat flux versus height: -, LES-result ; - - - -  -, SGS-part ; both for 
t ,  = 6.5. The error bars indicate the scatter of the mean profiles in the time period t ,  = 6 7 .  Solid 
symbols denote laboratory measurements by Deardorff & Willis [ 1985), open symbols represent 
aircraft measurements by Lenschow et al. (1980) (0, 24 February 1975; A ,  16 February 1975). 

FIGURE 3. Vertical velocity variance versus height : -, LES result for t ,  = 6.5, the error bars 
indicate the scatter of the mean profiles in the time period t ,  = &7 ; - - - - -, SGS part ; solid symbols 
denote laboratory measurements of Willis 8: Deardorff (1974), case Sl (A) and of Deardorff & 
Willis (1985) (@). The open symbols represent aircraft measurements of Lenschow et al. ( lz980) 
( 0 , 2 4  February 1975; A, 16 February 1975); -.-.-, interpolation curve (wz)/w: = l .S(z/z , )~( l -  
O . ~ . Z / Z , ) ~  proposed by Lenschow et al. (1980). 
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FIQURE 4. Horizontal velocity variance versus height. Curves and symbols as in figure 3 except for 
-. .-. .- , which represents the mean value of field measurements as reported by Caughey & Palmer 
(1979). . . - . . depicts the LES results for case I in Deardorff (1980). The open symbols represent 
aircraft measurements of both horizontal velocity components. 

than the Obukhov length. The LES results are well within the wide range of the 
experimental data. 

Figure 3 shows the profile of vertical velocity variance together with the SGS 
contribution and experimental data. The LES result seems to agree with the 
experimental data even better than the interpolation curve deduced from various 
measurements in the atmosphere by Lenschow et al. (1980). The SGS contribution 
is largest near the surface but amounts to less than 15% of the maximum total 
variance which is a small fraction. In Appendix C, we have shown that the SGS 
variance should stay below 1.8 (z/zi)’ if forced only by buoyancy. The fact that the 
SGS variance reaches this curve near the surface indicates that fluctuating shear 
produces an essential fraction of this variance. Above z/zi = 0.4, the variance 
decreases slowly and is very small above the inversion. Hence, the top boundary 
condition in the numerical scheme successfully radiates gravity waves out of the 
computational domain. 

The variance of the horizontal velocity fluctuations, see figure 4, is generally 
smaller than those of the vertical component because buoyancy forces excite directly 
only the vertical component while the horizontal component gains energy solely by 
the effect of pressure fluctuations. Only near the surface does a layer form in which 
the horizontal velocity fluctuations are larger than the vertical ones. The deviation 
between the simulation and experimental data are larger in this case. The large 
values obtained by Deardorff & Willis (1985) cannot be created by buoyancy forces 
alone. We have reasons to assume that the large horizontal velocity fluctuations in 
the tank experiment are caused by shear due to large-scale motions induced by 
horizontal variations of the surface heat flux. J. W. Deardorff (1987, personal 
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communication) informed us that the surface temperature a t  the bottom of the water 
tank exhibits variations of the order 0.3 K x 2T,. Schmidt (1988) found that such 
variations may explain the larger horizontal velocity fluctuations. The older 
measurements of Willis & Deardorff (1974) are much closer to  the numerical results. 
We have included the data points from their experiment Sl because in that 
experiment the Froude number was about 0.091 and thus close to the value 0.0922 
in our LES, whereas the Froude number is approximately 0.0625 in experiment S2 
of Willis & Deardorff (1974). The various data indicate a slight increase of both the 
horizontal and vertical velocity variance with decreasing Froude number. The 
experiments of Adrian et al. (1986) for non-penetrative convection between two 
horizontal walls can be considered as applying for zero Froude number and they 
exhibit, in fact, the largest velocity fluctuations both horizontally and vertically. 
The relatively small horizontal velocity fluctuations found by Willis & Deardorff 
(1974) were the reason why Deardorff & Willis (1985) repeated their laboratory 
investigations. They conjectured that the sidewalls of the water tank limited the 
horizontal velocity fluctuations in their previous experiment. In our case, the 
horizontal extent of the computational domain is rather larger (X/zi, = 5) and 
periodic boundary conditions do not limit horizontal velocity fluctuations, but we 
get still the same results as Willis & Deardorff (1974). Therefore, we do not believe 
that the sidewalls of the water tank adversely affect Willis & Deardorff’s data. The 
data summarized by Caughey & Palmer (1979) are obtained from various field 
experiments. Most atmospheric data are obtained for some finite mean wind speed 
with shear a t  the surface which is an additional source of turbulence. However, our 
results are in very good agreement with the data obtained by Lenschow et al. (1980) 
from aircraft measurements over a sea surface. Also Deardorff’s (1980) LES of the 
dry CBL confirms our results but shows considerably enhanced turbulence variance 
near the inversion for a stratocumulus-capped mixed layer. We therefore conclude 
that the present method correctly simulates the horizontal velocity variance for a 
dry CBL with zero mean wind speed and strictly homogeneous surfaces. 

The variance of the temperature fluctuations is shown in figure 5. Temperature 
fluctuations are produced by the negative product of heat flux and temperature 
gradient. This product is large near the surface and a t  the inversion. It is small in the 
middle of the CBL and even negative in the upper part of the mixed layer where heat 
is transported counter to the negative gradient of the mean temperature (Schumann 
1987). This explains the general shape of the profile. Near the surface, the simulated 
results are only little smaller than the experimental findings from field observations 
(Kaimal et al. 1976). Here, the SGS contribution is essential. I n  the mixed layer, the 
simulated results are small in comparison to the measurements of Deardorff & Willis 
(1985) but again agree well with those of Willis & Deardorff (1974). Our mixed-layer 
results are consistently smaller by a t  least a factor of two than those from 
measurements in the atmosphere (Guillement et al. 1978; Caughey & Palmer 1979; 
Lenschow et al. 1980; Druilhet et al. 1983). It should be noted, however, that T ,  is 
typically less than 0.1 K in the atmosphere so that i t  is unlikely that experiments will 
provide sufficient accuracy a t  a level of T’ x T,. The SGS contribution is negligible 
above z/zi > 0.05. At the inversion we again find good agreement with the results of 
Willis & Deardorff (1974) while the results of Deardorff & Willis (1985) are 
significantly smaller. The generation of temperature variance in the interfacial layer 
depends on its stability and the entrainment heat flux, both being functions of the 
Froude number (Wyngaard 1985). Therefore, we conclude that the smaller variance 
in the experiment originates from the larger Froude number, which amounts to 0.32 
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FIGURE 5. Temperature variance versus height. Curves and symbol; as in figure 3 except for 
, which represents the interpolation curve (T'">/P* = l.8(z/zi)-5 proposed by Kaimal et al. 

(1976) based on field measurements. 

in the experiment while it is 0.0922 in the LES. Our larger temperature fluctuations 
are not unrealistic : Caughey & Palmer (1979) report a maximum value of about 50 
for the normalized temperature variance and Lenschow et al. (1980) occasionally find 
maximum values exceeding 100. Finally, the LES results are close to results of SOC 
models as reported by Andr6 et al. (1978) and Finger & Schmidt (1986). 

I n  figure 6, we have plotted the SGS-dissipation rate ( E )  in comparison with 
various previous results. We find very good agreement with the LES-result of 
Deardorff (1974) and the few data points of Deardorff & Willis (1985). However, the 
present result is much smaller than dissipation profiles observed in the atmosphere 
by several authors (Caughey & Palmer 1979; Lenschow et al. 1980; Druilhet et al. 
1983; Guillemet, Isaka & Mascart 1983). On the other hand, in the case of strictly 
zero mean wind, the vertical integral of the dissipation rate must be less than the 
integrated production rate due to buoyancy because a small amount of energy is 
consumed by the entrainment process a t  the inversion. The non-dimensional integral 
of the dissipation rate amounts to 0.352f0.01, while that of the buoyancy 
production rate is 0.382k0.01 in our simulations. Hence our results and also those 
of Deardorff (1974) and Deardorff & Willis (1985) are consistent with this integral 
balance while the field observations can only be explained by the presence of a 
considerable fraction of shear production. Thus we conclude that previous results 
from field observations overestimate the dissipation rate for the CBL with zero mean 
wind. In  fact, Guillemet et al. (1983) find that a mean value of 0.35 for the normalized 
dissipation rate represents a lower limit to atmospheric observations for very small 
friction velocities. 

The triple moment of the vertical velocity fluctuations is shown in figure 7. This 
curve measures the contributions of the resolved scales only. The triple moment is 
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FIGURE 6. Dissipation rate versus height: -, present LES; . . . . . , LES of Deardorff (1974); 
.____. , mean value of field observations by Caughey & Palmer (1979); ---, aircraft measure- 
ments by Druilhet et al. (1983); -.-.-, aircraft measurements by Lenschow et al. (1980); e, 
laboratory measurements by DeardorlT & Willis (1 985). 
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FIGURE 7 .  Triple correlation of vertical velocity fluctuations versus height (resolved part only). 
Curves and symbols as in figure 3 except for the dashed curve, which is the LES-result for c, 
enlarged by 20% relative to the standard value given in table 1. 
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FIGURE 8. Skewness of vertical velocity fluctuations versus height (resolved part only). ~ (with 
error bars), present LES results ; . . . . . , LES result by Deardorff (1974) ; - - - - - , present LES result 
for cL enlarged as in figure 7 .  

non-zero because of the non-Gaussian, asymmetric flow structure with narrow strong 
updraughts and wide weak downdraughts. Tower measurements summarized by 
Hunt et al. (1988) indicate that the triple moments increase as (w3)>Iwi = z/zi near 
the surface and reach a maximum of about 0.25 in the middle of the mixed layer. Our 
numerical results show, however, a small negative value in the lowest mesh cell. Such 
negative values imply an unexpected downward transport of kinetic energy. This 
indicates a problem due either to finite-difference errors or deficiencies in the SGS 
model. A simulation with c1 = 1 . 2 ~ ~ ~  instead of cl = 1 . 0 ~ ~ ~  does not show this 
negative value and this indicates that the problem is mainly caused by the SGS 
model. We shall come back to this point later. Above the first grid cell, the triple 
moment increases nearly as steeply as predicted by Hunt et al. (1988). Thus we can 
assume that SGS contributions are small. In the mixed layer, the results agree quite 
well with the measurements of Deardorff & Willis (1985) which obviously exhibit 
large measurement uncertainties. The aircraft measurements of Lenschow et al. 
(1980) also show quite a large scatter but the mean values do agree with our 
numerical results. 

Figure 8 shows the velocity skewness. The results of Hunt et aE. (1988) imply a 
value of about 0.4 in the lower atmosphere. Our numerical results are close to this 
value near z 0 . 1 ~ ~ .  In  this figure, the problem of negative triple correlation becomes 
even more obvious than in figure 7. As discussed in Hunt et al. (1988), both the LES- 
results of Deardorff (1974) and those of Moeng (1984) reflect a difficulty in the model 
in this respect. It should be noted that third-order closure models such as those of 
Zeman & Lumley (1976) and Chen & Cotton (1983) also suffer from this problem. 
Even Willis & Deardorff (1974) could not entirely exclude negative triple correlations 
in their laboratory experiments. 

There is little experimental data with which one can compare the results for the 
pressure fluctuations, see figure 9. Our results agree well with those reported by 
Deardorff (1974). However, our results are about 40% smaller than those of Moeng 
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FIGURE 9. R.m.s. value of pressure fluctuations versus height (resolved part only) : ~ (with error 
bars), present LES-results; .. . . . ., LES result by Deardorff (1974); -.-.-, LES result by 
Moeng t Wyngaard ( 1986). 

& Wyngaard (1986). Their simulations show large buoyancy contributions which are 
particularly large near and above the inversion level. They find good agreement with 
data deduced from Doppler-radar measurements by Gal-Chen & Kropfli (1984). 
However the experimental data were obtained for a highly transient CBL with 
considerable shear above, so that they may not be valid for the present case. C.-H. 
Moeng (personal communication 1988) found that her pressure profile results were 
steady for three turnover time units so that numerical disturbances are less likely in 
causing her large pressure fluctuations. The dotted curve in figure 9 is the result 
Deardorff (1974) obtained a t  the final time of his simulation. Results at earlier times 
show even smaller pressure fluctuations. As time proceeds, he finds that the r.m.s. 
pressure increases mainly near and above the inversion. This suggests that his 
simulations may contain spurious oscillations due to gravity waves reflected from the 
top boundary of the computational domain while this effect is avoided in our scheme, 
which uses a radiating boundary condition. 

I n  summary, the mean profiles are in sufficient agreement with previous findings 
to conclude that the simulations give realistic results for the CBL both under 
laboratory and atmospheric conditions. The unexpected negative velocity-skewness 
values will be explained in $3.6. 

3.2. Spectra 

Spectra identify the importance of various scales. They are also most sensitive to  the 
SGS-model and can thus be used to validate the parameters of the model (Deardorff 
1971). One-dimensional spectra along horizontal lines were obtained by Fourier 
transforming the fields and averaging over all parallel lines a t  fixed height and time. 
The spectra are denoted by Qj,, Qju and QjT for vertical velocity, horizontal velocity, 
and temperature, respectively. They are functions of discrete horizontal wave- 
numbers k which are multiples of 2n /X .  As in Deardorff & Willis (1985), the spectra 
are multiplied by the wavenumber and normalized by the convective scales and then 
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FIGURE 10. Normalized horizontal spectra of horizontal velocity !Pa, vertical velocity a,, and 
temperature GT, multiplied by the horizontal wavenumber k ,  versus normalized horizontal 
wavenumber kz, at heights z/zi = 0.20,0.61 and 0.98. The data have been multiplied by the decimal 
factors as given in order to avoid overlap, e.g. kG,,jw: has been enlarged by a factor of 100 before 
plotting. The hatched areas represent the range of LES results at times t ,  = 6, 6.5, and 7. The 
symbols represent measurements by Deardorff BE Willis (1985) at various heights. The thin curves 
depict the inertia-convective range spectra for filtered data as defined in (14) and (15). 

plotted versus kzi as shown in figure 10. In the inertial subrange one expects 
Kolmogorov's spectrum, i.e. 

4 
3 

@,(k) = a,(e)%%, @,(k) = -a1(e)fk-5, GT(k)  = / ? , ( E ~ ) ( E ) - ~ ; ,  (14) 

where, according to e.g. Andreas (1987), a, x 0.52, PI z 0.8. The dissipation rates 
of kinetic - energy and half the temperature variance are E = c,,m/l and eT = 

aT 
As discussed by Deardorff (1971), one should, however, not expect to see these 

spectra in finite-difference simulations up to the shortest resolved scales because the 
discrete grid-point values effectively represent mean values over the grid interval Ax. 
For such mean values the spectra have to be multiplied by a filter function F ( k ) ,  

+ E " I " 2  3T 11, respectively (see Appendix B). 

sin(kAx/2) 
'(') = [ kAx/2  ] ' 

Actually, this filter applies to one-dimensional signals. For three-dimensional fields 
more complicated filters apply (Moeng & Wyngaard 1988) but the given filter should 
suffice for the present discussion. A strict agreement between the numerical 
simulations and the theoretical predictions can only be expected when the resolution 
is fine enough that it truly resolves at  least a significant portion of the large-scale 
end of the inertia range. Otherwise, the spectrum of the numerical results will be 
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strongly influenced by both the large-scale structure and by the finite-difference 
approximations. In the present simulation the resolution is still a t  the lower limit of 
what is strictly required. Thus, we cannot expect strong conclusions from 
disagreements in the spectra but they are certainly informative and agreement is a 
strong indicator for the correctness of the overall model. 

In  figure 10, the filtered inertial-range spectra are plotted for various heights 
together with the numerical results and unfiltered data as obtained by Deardorff & 
Willis (1985). The spectra are not smootlh. At low wavenumbers this can be due either 
to coherent structures as discussed by Grossman (1982) or to statistical errors. Near 
the inversion, part of the scatter originates from strong height dependence of the 
spectra and uncertainties in the exact value of xi. The error bands obtained by 
comparing the spectra a t  various times indicate that most of the scatter is of a 
random nature. A systematic time trend has not been found in the spectra for the 
time interval 6 < t ,  < 7, so that we can be sure that these spectra represent the 
asymptotic state of the CBL. Besides random variations, some of the peaks and dips 
in the spectra persist and may reflect large-scale structures. This is the case in 
particular for QW a t  z/zi = 0.2. Here, we observe two peaks near kzi = 3 and kzi = 9 
corresponding to wavelengths of the order 2xi and 0.72,. As we shall see, these 
wavelengths are in fact related to  the mean distance between plumes and the average 
diameter of updraughts respectively. These results corroborate Grossman (1982) who 
concluded that such peaks are realistic. In contrast, Deardorff & Willis (1985) doubt 
that such peaks have any physical meaning although their experimental spectra 
show similar ones. 

At high wavenumbers, the numerical results decrease slightly more steeply than 
the theoretical prediction. If the SGS model provides too little damping then this 
should show as an increase of energy a t  the highest wavenumber. Obviously, except 
perhaps for cDU a t  the lowest x-level, this is not the case in these simulations so that 
we can safely assume that the SGS viscosity is large enough to  damp out small-scale 
fluctuations. In  fact, i t  appears that  the damping is perhaps somewhat too large. The 
spectra show high degrees of anisotropy even a t  large wavenumbers. The u-spectra 
are consistently below and the w-spectra for z/zi < 0.61 are above the theoretical 
estimates. Also Deardorff (1971, 1972) found in his LES that the ratio of vertical to 
horizontal velocity spectra far exceeds the theoretical values of 413 (by up to a factor 
2.6). It appears, that  the isotropizing effect of pressure fluctuations is not large 
enough, for the present range of wavenumbers, to  create locally isotropic turbulence. 
The general level of the velocity spectra agrees approximately with the inertial- 
subrange theory. The numerical results for the temperature spectra are, however, 
always above the theoretical predictions. Also the laboratory data show higher 
values of the temperature spectra (for x /z i  < 0.61) than the inertial-range prediction. 
Thus, it cannot be known whether the differences are due to  errors in our numerical 
simulations or due to limitations in the applicability of the inertia-range predictions 
for this situation. 

The spectra agree generally with the data of Deardorff & Willis (1985) but some 
differences are noteworthy. We get poor agreement near the inversion, but this is not 
surprising as we observed large differences in the mean values a t  this level which are 
explainable a t  least partly by the differences in the Froude numbers as discussed 
above. For z/zi < 0.61, the experimental results generally exhibit larger amplitudes 
at low wavenumbers, in particular with respect to the u-component. As discussed 
above, we assume that a t  least part of these differences is due to large-scale 
inhomogeneities of the surface heating in the experiment. 
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FIQURE 1 1 .  Kormalized horizontal spectra as in figure 10 but for reduced SGS diffusivities. The full 
curves represent the LES-results at times t ,  = 6.5 and 7. The thin curves represent the 
inertia-convective range spectra for unfiltered data as defined in (14). 

In order to test the sensitivity of the computed spectra with respect to the model’s 
coefficients, we have performed a simulation with c,, and eRT both enlarged by a 
factor of 1.5. As discussed in Appendix B, the increased coefficients cause reduced 
SGS diffusivities and thus reduced damping. Since such simulations are very 
expensive, we have rerun the simulation, starting from the results at t ,  = 6, and 
performed the integration over 400 time steps until t ,  = 7. The resultant spectra are 
shown in figure 11. As expected, the spectra now agree better with an unfiltered - 513 
law but the differences between the u- and w-spectra are reduced only slightly. This 
confirms that the isotropizing effect of pressure fluctuations does not suffice to reach 
local isotropy at these scales. The tendency of energy accumulation at the highest 
wavenumber is still small but obviously enhanced ao that these simulations are a t  the 
limit of reasonably resolving LES. As can be seen from the spectral results, the low- 
wavenumber contributions are changed only a little and for this reason all the mean 
profiles discussed in $3.1 are affected little. It is difficult to decide which results are 
better. In any case, the results with the original set of coefficient values are in 
reasonable agreement with measurements and do not exhibit obvious effects from 
numerical finite-difference errors due to large small-scale fluctuations. Therefore, we 
shall continue to discuss the results with the original set of coefficient values, except 
as noted below. 

Insight into the structure of the CBL can be obtained from the spectra of the 
vertical heat flux (cospectra between vertical velocity and temperature fluctuations) 
shown in figure 12. Note that these results are plotted in linear scales. The general 
shape of the spectra is as reported by Kaimal et al. (1976). Our results are again not 
smooth but the scatter of the experimental data is even larger. The spectra exhibit 
large amplitudes over a wide range of wavenumbers a t  low heights where the vertical 
heat flux is largest. Thus, as expected, small-scale motions carry the heat upwards 
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FIGURE 12. Normalized horizontal cospectra of vertical velocity and temperature fluctations 
('heat-flux spectra ') versus normalized wavenumber kz, in linear scales for various heights z/zi at 
time t ,  = 7. A multiple of 0.2 has been added to the spectra to separate the curves for various 
heights. - - - - , encircles the range of downward heat flux ; -. - .- connects the wavenumber values 
of spectral maxima (note that the spectra are multiplied by the wavenumber k). 

near the surface. With increasing height, the amplitude and the width of the heat- 
flux spectra decrease. The normalized heat-flux spectra take their maxima near a 
wavenumber of about 5 so that lengthscales of the order zi are carrying most of the 
vertical heat flux. As the plotted spectra are multiplied by k, the absolute maximum 
occurs a t  even smaller wavenumbers or larger scales. In  the interval 0.7 < z/zi < 1.1 
we find negative heat-flux contributions. Obviously, the negative heat flux is carried 
solely by the small wavenumber or large-scale motions in the form of cold 
updraughts and warm downdraughts (Wilczak & Businger 1983) a t  scales of the 
order zi. The large-scale heat flux is already negative a t  levels where the total heat 
flux is still positive. At z/zi = 1.1 1 and above, we find small but significantly positive 
heat-flux values. 

The importance of large scales for the entrainment heat flux has also been observed 
experimentally by Mahrt & Paumier (1984) and in previous studies cited therein. The 
fact that entrainment is not a small-scale feature has implications with respect to 
entrainment models. The spectra clearly show that the vertical heat flux is positive 
and decays to zero a t  the inversion for high wavenumbers. Hence, the SGS model 
should give zero or slightly positive values a t  this level. However, our SGS model 
predicts small negative heat-flux values. By reference to (A 10) and (A 6) in 



Coherent structure of the convective boundary layer 

(l7) 

53 1 

0 2.5 5.0 

XIZiO 

FIQURE 13. Contour plots of (a )  temperature fluctuations T'/T,,, (b )  absolute temperature 
TIT,,, and ( c )  vert,ical velocity w/w*, for x/z,, versus z/z,, at time t ,  = 7 in a vertical plane 
(y/zio = 2.437). The temperature contours apply for T'/T,, = f 0 . 5 ,  f 1.5, & 2.5, ... and those of 
velocity for W/W+,  = k0.2, f0.6, f 1.0, ... . Dashed curves represent negative velocity values. The 
contour line increment of absolute temperature is AT = 8T,,. 

Appendix A we see that this suggests that the value of the coefficient cBT is too large. 
This coefficient accounts for the redistributing effects of pressure fluctuations 
linearly correlated with buoyancy forces. In the present simulations, with rather high 
resolution, this SGS contribution is negligible but it might be important otherwise 
and demonstrates the necessity for a SOC model. 

3.3. Instantaneous Jields 
We now turn to the spatial structure of the turbulent velocity and temperature 
fields. Figures 13 and 14 show contour plots of the fields of vertical velocity and of 
temperature in vertical and in horizontal cross-sections a t  various heights a t  the final 
time of our simulation. Plots for t ,  = 6 show similar patterns. Figure 13 has been 
selected from a series of parallel vertical sections to identify single updraughts. The 
selected section shows clearly the existence of strong and narrow updraughts, some 
of which extend over the whole CBL. Often the strong updraughts have well-defined 
edges with step-like variations of velocity and temperature as observed in the 
atmosphere (Kaimal et aZ. 1976; Lenschow & Stephens 1980). Both, the velocity and 
temperature contours show several local maxima which suggest that the updraughts 
contain smaller scale bubbles. A computer movie generated from a sequence of such 
plots shows that the bubbles are rising more quickly than the average updraught. 
The updraughts penetrate into the stable layer which causes an upwelling of the 
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FIQURE 14 (a ,  b )  (i)-(iii). For caption see facing page. 

contours of constant absolute temperature. A t  the sides of these penetrations, at  
times when the velocity has already become negative, tongues of warm air, called 
‘wisps’ by Stull (1973), which are best seen from the isothermals of temperature 
fluctuations, are torn downwards. Such wisps are clearly visible in radar and sodar 
soundings reported by Rowland & Arnold (1975). Above the inversion there are still 
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FIGURE 14. Contour plots (a) of vertical velocity w/w,, and ( b )  temperature fluctuations T'/T,,  at 
time t ,  = 7 in (z, y)-planes for heights, (i) z/z,, = 0.097, (ii) 0.25, (iii) 0.5, (iv) 0.75, (v) 1.00, (vi) 1.25. 
The contour lines correspond to T'/T,,  = 0,+ 1,+2,  ... and w/w,, = +0.2,*0.6,+ 1.0, ... . 
Dashed curves represent negative contour values. 
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considerable temperature fluctuations due to wavy motions. These waves are excited 
by the updraughts which ‘bounce’ against the stable layer. Near the surface we see 
very fine-scaled vertical motion. Small plumes with temperature excess rise from the 
surface into the mixed layer. 

The horizontal cross-sections in the upper mixed layer, figure 14 (iv)-(vi), show 
several isolated plumes with strong updraughts. The typical spacing between these 
updraughts varies between 1 and 22,. The plumes are seldom round but are very 
irregular in cross-section. Our results are supported by Lidar observations of Crum 
et al. (1987) who observed a highly convoluted and turbulent outer boundary of 
thermals which they call ‘intromission zone’. Between the updraughts the fluid is 
sinking while its temperature remains quite uniform. Temperature contrasts are very 
small at  intermediate levels, z/zi = 0.5 and 0.75 (as to be expected from figure 5 ) .  At 
the inversion, we observe that the thermals penetrate upwards in small areas. These 
areas are surrounded by a ring of downward motions in which the temperature 
fluctuations are positive. The velocity contours a t  z = zi even occasionally show a 
second ring with upward motion indicating a wave-like spreading of the 
disturbance radially away from the centre of the upward motion as if a stone had 
been thrown into a lake. Above the inversion, a t  2 = 1.252,, the temperature 
fluctuations indicate large-scale variations. It is clear that small vertical-motion 
amplitudes would suffice to create large amplitudes of temperature fluctuations in 
the stable environment. However, the temperature fluctuations are not strongly 
correlated to the vertical velocity. On the contrary, the velocity fluctuations are 
small at this level and randomly distributed. The weak correlation is also documented 
by the small vertical heat flux, see figure 2, at these levels. Small-scale temperature 
fluctuations dissipate quickly while large-scale fluctuations decay slowly. Thus it is 
more likely that the temperature fluctuations are remainders of previous excitation 
by vertical motions and are passive (fossil turbulence) rather than an immediate 
consequence of actual velocity fluctuations. We have observed similar effects in 
direct simulations of stratified homogeneous turbulence (Gerz, Schumann & 
Elghobashi 1989). As explained in Schumann (1987), the large temperature variance 
in the stable layer represents a reservoir of potential energy $bg(T’2)(d(T)/dz)-1 
which is converted into kinetic energy by the countergradient heat flux. In  fact 
figures 2 and 12 show small but finite values of positive heat-flux values in this 
domain where the temperature gradient should induce negative heat-flux values. 

At smaller heights, figure 14 (i)-(iii) exhibits a significantly different flow structure. 
Convection is organized in lines that are approximately straight and form polygonals. 
The typical length of the line segments and their horizontal spacing is about 1.32,. If 
one considers the cross-point of the lines as the axis or the hub of a wheel then the 
lines look like spokes of a wheel. For this reason this type of structure was called a 
‘spoke pattern’ by Busse & Whitehead (1974). Three or four (occasionally five) 
spokes join into one hub. From top to bottom, the spoke pattern is observed first in 
the velocity contours at z/zi = 0.5. The temperature fluctuations are still small at 
this level and more irregular. With decreasing height, the spoke pattern becomes 
more and more pronounced and the velocity and temperature fields more strongly 
correlated (as required for vertical heat flux). Obviously the large-scale updraughts 
in the upper part of the mixed layer originate at the hubs of the spoke-pattern 
wheels. As revealed by additional plots in terms of horizontal velocity in horizontal 
planes (see also Mason 1987), the vertical motion in the wheel axis is fed by horizontal 
motion near the surface, first towards the spokes and then inside the spokes towards 
the hubs. At normalized heights between 0.2 and 0.5, the flow is less regular and 
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FIGURE 15. Contour plots of vertical velocity w/w*, at time t ,  = 7 in an (s,y) plane for height 
z/z,,, = 0.25 as obtained from the LES with (a )  the standard set of SGS coefficients and ( b )  with 
reduced SGS diffusivities. The contour lines are coded as in figure 14. 

occasionally spirals with some vertical vorticity into the updraughts. At z/zi = 0.25 
and below, we observe several small spots inside the downdraughts. Obviously only 
those small-scale plumes that are close to a hub merge into the updraught while 
small-scale thermals in the downdraught area arise from the surface and propagate 
a small distance upwards but then decay. 

In  figure 15 we show that the spoke pattern persists in the simulations if the SGS 
diffusivity is reduced. This figure shows one horizontal cross-section of the vertical 
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FIQURE 16(a). Perspective view of the surface of constant vertical velocity w/we0 = 1.0 at time 
t ,  = 7. Inside the surface the velocity is larger than on the surface. The data are from a sub-volume 
of the simulation results comprising 0.906 < x/zi0 < 2.125,2.22 < y / q 0  < 3.44, 0 < z/z,, < 1.5. The 
point of view is at (z, y, z)/z, ,  = (6.25, -4.375, 6.25) relative to the origin shown by the coordinate 
axis. (b )  Perspective view of the surface of constant temperature TIT,, = 660.9 at time t ,  = 7 .  
Inside the surface the temperature is higher than on the surface. The data are from a sub-volume 
of the simulation results comprising the same horizontal section as in (a )  but extending over a 
smaller height interval 0 C z/zio < 1.0. The point of view is the same as in (a) .  

velocity field from both our standard case and the case with 50 % increased values of 
cRm and cRT for which we have shown spectra in figure 11.  This cross-section is 
representative of all other cross-sections in showing the spoke pattern. Figure 15 ( b )  
clearly reflects the larger content of small-scale motions for reduced SGS diffusivity 
but the large-scale spoke pattern still dominates. In  fact, ( a )  and ( 6 )  show more or less 
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the same large-scale structure not only in the mean but also with respect to  individual 
details. Thus, the large-scale spoke pattern is only weakly dependent on small-scale 
disturbances. 

I n  figure 16 we present perspective views of surfaces of constant vertical velocity 
and constant temperature as obtained with the standard set of coefficient values. For 
this purpose, a subvolume of the whole computational domain has been selected 
which contains one large updraught in the middle and two further strong updraughts 
a t  the sides. The whole computational domain would give too complicated a picture. 
Figure 16(a) clearly illustrates three spokes connecting the centre plume with its 
neighbours. Obviously, the plumes are not smooth. They are larger in height than in 
diameter. However, they are much thicker than Hess, Spillane & Lourensz (1988) 
suggest in a corresponding sketch. The empty area is filled with downdraughts and 
we observe a few smaller updraughts in this area but they die out while rising. They 
do not seem to merge together. The temperature surface in figure 16(b) again shows 
one large plume in the centre together with two smaller neighbours. Many small 
thermals near the surface rise against the downdraughts and then decay. The big 
plume in the centre has penetrated the inversion and this is reflected by the circular 
open area of low temperature at the top of this plot which ends at z/zi = 1 .  This open 
circular area is surrounded by small warm downdraughts extruding down into the 
mixed layer. The result shows that part of the entrainment flux is connected with 
large-scale downward motion along circles around t8he updraughts but with smaller 
scale temperature variations. It supports the concept of ‘wisps ’ introduced by Stull 
(1973) to explain the entrainment flux. 

3.4. Correlation functions 
In  order to determine the mean spatial structure of the CBL we compute correlations 
between vertical velocity w(x ,  y,z,,t) a t  height z, and any other field function 
f ( x ,  y ,  z, t )  according to 

(16) 

where we average over all positions (x’, y’) in the computational domain. Instead of 
vertical velocity one could have selected any other field component but vertical 
velocity best shows the CBL structure. The height z, defines the ‘reference level’ and 
x and y are the horizontal separations from the ‘reference point’. The coordinate 
values x + x’ and y + y’ are evaluated modulo X according to the periodic boundary 
conditions. I n  the windless CBL, the correlation function is symmetric about the axis 
x = y = 0. Thus i t  cannot provide any information on the spoke pattern. Also, the 
averaging smoothes out edges of updraughts and small-scale thermals inside 
updraughts. 

Figure 17 shows some of the correlation functions obtained by averaging over the 
results at times t ,  = 6.0, 6.1, .. . , 7.0. As these correlation functions are functions of 
three space coordinates and involve averages over all points in a horizontal plane, 
their evaluation requires considerable computing time (35 minutes of CRAY -XMP 
for each average a t  a given time). As the results show, the statistical uncertainty 
induced by the limited data base, which causes for example deviations from 
symmetry, does not appear to be large. The results depend on the selected reference 
level (here z, = zJ2) .  

I n  order to  interpret the results, we recall that  the correlations between w at one 
point and f a t  another point a t  large separation is large if both functions show large 
turbulent fluctuations and if they are correlated owing to large-scale coherence. 

R W f ( X ,  y ,  z c )  = (w(z’,  y’, *,, t ) f (x’+x,  y’+ y ,  z,  t ) ) ,  
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FIGURE 17.  Correlation functions (a )  R,,, ( b )  R,,, and ( c )  R,,., averaged over the time period 
6 < t ,  < 7 for 2, = 0.5zi, in a vertical (x, 2)-plane, y = 0, 0 < z/zlo < 1.5, - 1.25 < x/z,,, < 1.25. For 
larger z-values, the correlation functions are very small and are therefore not shown. The contaur- 
line increments, the minimum and the maximum values are (0.02, -0.09, O. l )wi ,  (0.04, -0.04, 
0.34) wi, (0.04, - 1.26,0.63) w* T,, from (a )  to ( c )  respectively. In this and the subsequent contour 
plots, the contour levels are set such that the zero value is excluded for those functions t h a t  are 
not strictly positive (levels k0.54, f 1.54, ... for given increments A ) .  Contours for negative levels 
are dashed. 

Moreover, we note that the correlation function averages over both updraughts and 
downdraughts. Thus, its pattern is not the pattern of updraughts. The horizontal 
separation between the reference point and the zero contour is a measure for integral 
lengthscales. 

Figure 17 displays the correlations between the velocity components u and w and 
the temperature fluctuat,ions T' a t  any point in a vertical plane correlated with the 
vertical velocity w(z,) in the same plane, as defined in (16). The correlation functions 
show coherence from the surface up to the inversion. Horizontal velocity and 
temperature fluctuations show quite large correlation maxima at large separations. 
Rising motion in one convective element is correlated with motion towards the foot 
of this element near the surface and motion away from its head near the inversion. 
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The temperature fluctuation is positive at the foot of the convective structure (but 
negative at  the surface itself) and negative in the interfacial layer. The result clearly 
shows the dominance of large-scale circulations. In  particular, we note the 
pronounced maxima of horizontal velocity in the surface layer. The corresponding 
extrema in the interfacial layer are less pronounced. Thus the average rising or sinking 
fluid element is connected with horizontal flow near the surface quite remote from 
the element's axis. 

The fact that the temperature plot shows a maximum in the surface layer is a 
consequence of large temperature fluctuat,ions and large coherence. Such coherence 
suggests large-scale plumes. I n  contrast, rising thermals would cause a local 
temperature maximum near the reference point and little correlation with 
temperature fluctuations near the surface. The reduced surface temperature indicates 
enhanced heat transfer due to turbulent motion a t  the foot of plumes. The negative 
temperature correlation in the interfacial layer above the point of reference 
originates from thermals which penetrate into the warmer layer above the inversion 
but are relatively cool. This is one of the causes of entrainment heat flux. 

The correlation R,,(x = 0, y = 0, 2) on the axis is the autocorrelation of vertical 
velocity as a function of vertical separation for which Hunt (1984) predicted a linear 
increase with z. The constant spacing between the contour lines along the axis clearly 
supports this prediction. We have also computed the correlation R,,z between 
velocity and velocity variance. I ts  contour plot (not shown) is similar in shape to that 
of the correlation between the velocities w themselves but the correlation increases 
approximately quadratically from the surface to the reference level and the contours 
are a little more concentrated near the axis of symmetry. The radial lengthscale 
based on the separation of the zero contour of R,, amounts of 0.492,. For 
comparison, at z/zi = 0.48, Deardorff & Willis (1985) find zero autocorrelation of the 
vertical velocity a t  a radius of 0.562,. In  view of the statistical uncertainty of such 
integral lengthscales (Lenschow & Stankov 1986) this difference is small. The 
lengthscale in terms of surface-layer temperature is 0.532,. Largest is the radius of 
the area in which horizontal motion near the surface is correlated with rising motion 
at the reference point : 0.952,. The mean separation between updraughts and 
downdraughts, measured in terms of the distance of the position of minimum 
autocorrelation of vertical velocity relative to the axis of symmetry, is 0.932,. 

3.5. Conditionally averaged updraughts and downdraughts 
The correlation functions cannot distinguish between updraughts and downdraughts. 
Moreover, the pattern of the correlation functions is not the pattern of the convective 
circulation and may be misleading. Therefore, we have determined conditional 
averages, which are defined as follows. Let (xi, yl), i = 1 ,2 ,  ... , n, be the horizontal 
coordinates of a centre of an event in terms of an updraught or a downdraught and 
f ( x ,  y ,  z ,  t )  be any component of the flow field. Then the conditional average f i s  the 

(17) 
mean value 

Note the formal similarity with (16). The coordinate values xi + x and yi + y are again 
evaluated modulo X. The crucial aspect of conditional averaging is the definition of 
the event's centre, i.e. of ( x ~ ,  ya). We define the event using vertical velocity as 
' indicator function '. Accordingly, we shall call the results ' w-events '. We have also 
considered ' T-events ' based on temperature fluctuations as the indicator function. 
However, the differences (for 2, x zi/2) are small and so we do not report details of 

1 "  

m i - 1  
fix, y,z,t) = - r, f("a+x,Yi+Y,2,t). 

18 FLM 200 
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FIGURE 18. Conditionally averaged (a )  updraughts and (b )  downdraughts for z ,  = 0.52, in terms 
of (i) 4, (ii) 6, and (iii) averaged over the time period 6 < t ,  < 7 in a vertical (z, z )  plane as in 
figure 17. The contour-line increments, the minimum and the maximum values of the updraughts 
and the minimum and the maximum values of the downdraughts are (0.05, -0.36, 0.33, -0.20, 
0.18)w,, (0.2, -0.1, 2.0, -0.96, 0.18)w,, (0.3, -3.0, 2.7, -3.3, 2.4)T,, from (i)-(iii) respectively. 

such T-events. In  either case, the positions (zi,yi) are those where the indicator 
function for z = z, assumes a local maximum for updraughts (or minimum for 
downdraughts) of a magnitude exceeding a selected threshold value c and which have 
a minimum distance d from all other previously found event centres. 

The algorithm to determine these positions works as follows. A two-dimensional 
field of flags is associated with the horizontal grid points. Initially, the flags are set 
to 'on'  and i is set to zero. Then we search for that  position where the indicator 
function assumes the proper extremum (maximum for updraughts) exceeding the 
threshold value in magnitude. Once this position is found, i is incremented by one 
and the new position is entered into the actual list of positions (xi, y i ) .  Then, for all 
mesh points which are within a circle of radius d around the actual position, the flags 
are set to  'off' (including those that are in the circle due to  periodicity of the domain). 
Thereafter, the next position is searched for in the remainder of the domain where 
the flags are still set to on, etc. The search ends when all flags are set to off or when 
the resultant extreme-value magnitude no longer exceeds the threshold c .  
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FIGURE 19. Conditionally averaged (i) heat flux wT', (ii) momentum flux u'w and (iii) pressure 
fluctuation I?' for (a) z, = 0.52, and ( b )  z, = 0.3332, for the time period and plane as in figure 18. The 
contour-line increments, the minimum and the maximum values for (a) and the minimum and the 
maximum values for ( b )  are (0.3, -0.3, 5.7, -0.3, 6.9)w,T,, (0.02, -0.11, 0.16, -0.13,0.13)~2,, 
(0.02, -0.17, 0.07, -0.15, O.O6)pw2,, from (i)-(iii) respectively. 

In general, the results depend strongly on the chosen indicator function, the values 
of the threshold c,  the separation distance d,  and the height z,. If, however, the 
separation d is selected to be large enough, we average over statistically independent 
events and the results become insensitive to the actual value of d. They also become 
insensitive to the threshold G if this value is sufficiently small in comparison with the 
r.m.s. value of the indicator function, because then the above search loop ends before 
this threshold becomes effective. This feature is a definite advantage of our method in 
comparison to other proposals (Lenschow & Stephens 1980; Greenhut & Khalsa 
1982, 1987). The dependence on the reference level z,, however, remains. 

Figures 18-20 depict various conditionally averaged fields related to updraughts 
and downdraughts in terms of contour plots in a vertical plane through the axis of 
symmetry, we obtained for w-events with a threshold equal to the r.m.s. velocity at  
the reference level, c = w'(z,), and z, = zi/2. The separation distance d = (X2/(n8)) i  NN 
1.02, is constructed such that eight circles of radius d have the same area as the 
computational domain X2. However, owing to overlap of the circles, the number of 

18-2 
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FIGURE 20. Conditionally averaged time derivatives and hydrostatic pressure of_ updraughts for 
z, = 0 . 5 ~ ~  for the time period and plane as in figure 18. (a) (i) aG/at, (ii) azE/at, (iii) aT/at. The related 
contour line increments, the minimum and the maximum values are (1.0, -5.4, 7.2)w2,/zi, (2.0, 
-20.0, 19.c)w2,/zi, 12.0, -16.0, 19.O)T,w,/z,, from (i) to (iii) respectively. ( b )  shows ( i )  @,, (ii) 
dzE/dt -&T, (iii) dT/dt. The related contour-line increments, the minimum and the maximum 
values are (0.1, -1.02, 0.24)pw2,, (2.0, -5.1, 2.1)w2,/zi, (2.0, -12.6, 5.4)T,w,/zi from (i)-(iii) 
respectively. 

events is greater. On average, we find 16 updraughts and downdraughts in the 
computational domain. For half the separation distance, this number increases to 28. 
Suchkalving of the separation distance causes a decrease of the maxima of ti, G, p' 
and wT' by 10, 10, 0 and 24%) respectively. The shape of the convective structure 
remains virtually unchanged and the statistical uncertainty decreases only slightly. 
Thus the effect of reducing the separation distance is small, and the present results 
are significant and not a pure function of the selected sampling parameters. The 
results shown in figures 18-20 represent mean values over 400 time steps from 
t ,  = 6 to 7 (with fixed sampling parameters). This long averaging period was necessary 
to bring the statistical errors down to acceptable levels. If we assume that the 
lifetime of small-scale thermals is of order 0.1 (in the non-dimensional units) then we 
average over approximately 160 independent events. Thus the standard deviation 
of the mean values is of order 160-i x 0.08 times the maximum r.m.s. value of the 
individual fields. Such statistical errors cause the deviations from symmetry which 
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are noticeable from the plots in figures 18-20. Longer living components of the 
structure will be even more uncertain and this seems to  be the case in particular for 
the mean pressure, see figure 19. 

The results clearly show the existence of large-scale updraughts and downdraughts 
which extend from the surface up to the inversion. The pattern of the updraughts is 
in fact similar to that shown by the correlation function. However important 
differences are to be noted. The conditionally averaged updraughts have large vertical 
velocity (maximum value = 2.0~1,). The horizontal radius is approximately 0.332,. 
Downdraughts show a minimum velocity of -0.96w, and a larger radius (0.52,). The 
ratio of updraught to downdraught speed amounts to 2.1. This value is considerably 
larger than the value 1.5 reported by Greenhut & Khalsa (1987) based on a different 
sampling procedure. Both the updraughts and downdraughts are correlated with 
strong horizontal velocities (up to 0.36wJ in the surface layer. This correlation has 
also been observed by Coulman (1970). It can also be identified from Doppler-radar 
observations reported by Frisch et al. (1976). The temperature pattern shows a 
coherent structure which extends from the surface up to the inversion but the 
temperature shows a maximum near the reference level z, = 0.52,, which indicates 
that the updraughts are to a large extent formed by thermals with small radius of 
coherence. However, the temperature values are still quite large near the surface and 
this phenomenon is characteristic for plumes extending from the surface a t  least up 
to the reference point. The maximum temperature surplus of the updraughts 
amounts to 2.7T,. This is a quite large value. Lenschow & Stephens (1980) and 
Greenhut & Khalsa (1987) find that the temperature surplus of updraughts decreases 
with height and has already become negative above z/zi x 0.4. This is obviously an 
effect of different definitions of conditional sampling and shows that our method is 
more effective in identifying strongly buoyant updraughts. The updraughts cause 
negative temperature fluctuations in the interfacial layer ( - 1.9T,) while the 
downdraughts are connected with positive temperature fluctuations in this layer 
(0.5T,). Both effects contribute to the entrainment heat flux (Wilczak & Businger 
1983). Above the reference height z, the motion is away from the updraughts and 
possesses two maxima of the horizontal velocity, one just above the reference level 
(iZ/w* = 0.15) and a second near the inversion (iZ/w* = 0.2). The first maximum is 
due to bubbles in the updraughts which displace fluid sideways while rising. The 
upper maximum reflects the large-scale coherent motion. Note that the results do not 
preserve the step-wise variations a t  the boundaries of updraughts or a t  the inversion 
layer because of averaging. 

Figure 19 shows the fluxes wT' and u% (resolved and SGS contributions) and the 
dynamic pressure fluctuations fi' (resolved part only) connected with updraughts. 
Figure 19(a) shows the results for the reference level 2, = 2,/2 as considered in fig- 
ure 18. For comparison, figure 19(b)  shows the same functions for a slightly lower 
reference level. This comparison shows that the results preserve their pattern a t  least 
for this variation of the reference level. Significant variations are to be expected, 
however, if z,/zi is taken outside the interval (0.1, 0.8). Updraughts induce large 
values of upward heat flux which by far exceed the average values. Updraughts are 
also connected with significant amounts of momentum fluxes. Most of these fluxes 
are simply due to the product .ii@ but small-scale turbulence (at resolved and subgrid 
scales) also contributes to these fluxes. Note that the momentum flux is virtually zero 
a t  the surface itself. Thus friction at the surface plays a minor role in the dynamics 
of the updraughts. This result was postulated by Schumann (1988) who assumed that 
the horizontal motion in the surface layer loses most of its momentum by large-scale 
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advection across the interface between the surface layer and mixed layer. In fact, the 
momentum flux is largest above the reference level. Thus the updraughts lose 
substantial amounts of kinetic energy by momentum flux and shear at the inversion. 
The pressure signal exhibits considerable statistical uncertainty but it is nevertheless 
obvious that the pressure is most affected by the large-scale dynamics of the 
updraughts and the pressure fluctuation is negative below the thermal. This 
behaviour is to be expected from hydrostatic considerations (see below). Quali- 
tatively the same structure has been found by Wilczak & Businger (1984) from 
conditionally averaged pressure fields for the surface layer of the CBL. The negative 
pressure fluctuation just below the point of reference is presumably caused by 
buoyant bubbles which suck in air from below and from the sides. Pressure 
fluctuations assume a positive maximum near the inversion presumably because of 
a pressure head due to thermals impinging on the inversion. 

Figure 20 displays fields of time derivatives in updraughts and the related 
hydrostatic pressure. Both local @/at )  and Lagrangian time derivatives (dldt = 
a/at + @a/&) are plotted. The temperature derivatives are most noisy and indicate the 
limitations of the finite data base. For ‘quasi-stationary ’ updraughts the local time 
derivatives should be less than unity in the non-dimensional units (timescale greater 
than zi/w,) but we observe much larger local time derivatives. The Lagrangian time 
derivatives are smaller but still much larger than unity. Lenschow & Stephens (1980) 
had to assume that local time derivatives were small in their analysis of the vertical 
momentum balance of updraughts using conditionally averaged flight data. We 
cannot decide whether their assumption might still be valid for the different 
sampling definition which they used but our results cast some doubts on this 
assumption. The present results indicate that updraughts are composed of two types 
of motion : large-scale quasi-steady circulations together with small-scale rising 
thermals. The thermals cause large local time derivatives near the point of reference. 
The acceleration values increase when x ,  is decreased. At larger distances from the 
point of reference, the accelerations are small. The small time-derivatives of 
horizontal motion in the surface layer confirms the applicability of the Monin- 
Obukhov relationships for evaluation of surface fluxes. This justifies both our 
surface boundary conditions and the model used by Schumann (1988). However, 
updraughts inside the mixed layer are definitely unsteady. 

As a crude but simple model, the dynamics of rising thermals may be 
approximately described by entrainment equations adapted from those given by 
Turner (1986) : 

Here, r is the radius of the thermals as determined from figure 18, and yT, yw are the 
entrainment coefficients. These equations are designed for spherical thermals rising 
in a neutral environment with negligible virtual mass. For 2, = 0.5zi, we obtained 
r x 0.332,. From the minimum values of the Lagrangian derivatives dp/dt = 
-12.6T,w,/z, and d@/dt-bgp= -5.1w2,/zi shown in figure 20 and the corre- 
sponding values G x 2.0w, and p x 2.7T, we estimate 

yT x 0.26, yw x 0.14. (20) 



Coherent structure of the convective boundary layer 545 

These values change only little if we halve the separation distance (yT = 0.23, yw = 
0.15), or if we reduce the reference level to z, = xi/3 (yT = 0.21, yw = 0.16). The 
entrainment-coefficient values are close to common estimates which vary between 
0.20 or 0.25 according to Turner (1986). Our results indicate very vigorous small- 
scale mixing as found by Crum et al. (1987), in particular for temperature. The larger 
entrainment coefficient for temperature is consistent with a smaller value of the 
turbulent Prandtl number for small-scale mixing, compare equation (B 18) in 
Appendix B. Further analysis has shown that updraughts are connected with 
pronounced local maxima of dissipation rate (1.4w$/xi) and SGS kinetic energy 
(0.132~:) a t  the reference point, which shows the presence of mixing quantitatively. 
Conversely, downdraughts experience reduced dissipation rates and SGS kinetic 
energy, so that they are less affected by entrainment. 

For stationarily rising thermals, d8/dt = 0, equation (18) shows that the thermal 
terminal velocity is 

Hence, as expected, large thermals rise faster than smaller ones. This explains why 
the flow in the lower mixed layer converges mainly towards the centre of the large 
updraughts which form at the hubs of the spoke pattern. Also it suggests that 
adjacent small plumes are drawn into the wake behind the largest thermal. 

The hydrostatic pressure in figure 20 (b)(i) has been obtained from 

fi, = fi(2) + p/?g!F’dz. i: 
The result shows large negative hydrostatic pressure at the surface below the 
relatively light updraught (ph(O, 0 , O )  = - 0 . 9 ~ ~ 2 , ) .  For comparison the actual 
pressure field fi’ connected with the updraught, see figure 20, is much smaller in 
amplitude (factor 6.7) and different in shape. Thus, hydrostatic pressure is a poor 
estimate for the actual pressure in the CBL. This was not expected in view of the 
study of Moeng & Wyngaard (1986) who found that about 40% of the pressure 
fluctuations are of a hydrostatic nature. A similar difference has also been noted in 
discussing figure 9. Obviously, the main portion of buoyancy forces is balanced by 
inertia forces and entrainment drag rather than by pressure. However, the actual 
pressure fluctuations and the hydrostatic pressure both have a tendency to drive 
horizontal motions from the foot of downdraughts towards the foot of updraughts as 
assumed in the model of Schumann (1988). The smaller pressure forces are balancecJ 
by smaller momentum fluxes. In fact, figure 19 shows that the momentum flux u‘w 
is very small at the bottom and still small a t  the top of the surface layer at z = 0.12,. 

3.6. InJuence of surface roughness 
As explained in the introduction, the present study was initiated by the question of 
how surface roughness influences the minimum friction velocity and the heat transfer 
at the surface. The concept of minimum friction velocity was introduced by Businger 
(1973). Note that the friction velocity is zero in the ensemble mean. We define the 
minimum friction velocity C., as the r.m.s. value of friction velocity at the surface for 
zero mean wind. The heat transfer is measured in terms of the difference A$ between 
the mean temperature 8, a t  the surface ( x  = z,,) and 8, = (T(0.1~~)) at the top of the 
surface layer (see figure 1). Both values are computable from the LES where local 
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FIGURE 21. Influence of surface friction height zo on (a)  the vertical profile of the horizontal velocity 
variance (the solid line corresponds to the reference case of figure 4), ( b )  the skewness (w3)/  
(wz$ of vertical velocity (compare figure 8 for the reference case), (c) the dissipation rate ( E )  
(compare figure 6 for the reference case) : - - - - - , z,,/zi = -, zo /z ,  = 10-4 ; ---, zo/zi = 10-6. 

values of friction and temperature differences are computed by locally applying the 
Monin-Obukhov relationships. Schumann ( 1988) found that these quantities are 
smooth functions of In (zi/zo) and approximately equal to 

in air. Here Ra = (/3gAOz?)/(v,u) is the Rayleigh number in terms of AO. Data 
reported in figure 4 of Frisch & Businger (1973) show A0 w 13 K. Unfortunately, 
their paper does not contain all the scales necessary to test the theoretical prediction. 
However, J. A. Businger (personal communication, 1988) estimates 8 K < A0 < 
15 K, 0.09 K < T ,  < 0.13 K, 750 m < zi < 1500 m, and 1 cm < zo < 2 cm. These 
data define a box 60 < AO/T, < 170, 4 x lo4 < zi/zo < 15 x lo4, which is crossed by 
the line predicted by (23). Although this supports our theory, further measurements 
are desirable to narrow the spread of data. 

In the present study, we have performed integrations from non-dimensional time 
6 to 7 with different values of the surface-roughness heights, all starting from the 
fields obtained for zi/zo = lo4 a t  non-dimensional time 6. We find that the flow in the 
surface layer adjusts up to errors below 2 YO to changes in the surface roughness after 
a time of order 0.15zi/w*. Therefore, the results a t  non-dimensional time 7 again 
represent the asymptotic state. 

Before we present the LES results for the surface temperature, we discuss the 
effect of the surface roughness on the turbulence in the CBL. Figure 21 shows profiles 
of the horizontal-velocity fluctuations, the vertical-velocity skewness, and the 
dissipation rate. Figure 21 ( a )  shows that increased roughness height causes reduced 
horizontal-velocity fluctuations mainly in the surface layer. This is the expected 
effect of increased friction over rough surfaces. However, the short dashed curve 
shows that the mixed layer is also affected by surface roughness if the roughness is 
very large ( z o / z i  = 
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The skewness profiles, figure 21 b,  indicate high sensitivity to surface roughness. 
Note that the expression -a(w3)/az forms a source term in the budget equation of 
vertical-velocity variance. At the surface, w3 is zero. Thus, the source term in the 
lowest grid cell is negative if (w3) > 0 a t  the top of the first grid cell. If the skewness 
changes from positive to negative values, this source term changes from negative to 
positive in the lowest layer of the computation. Thus negative skewness implies that 
kinetic energy is transported down into the lowest grid cell by turbulent transport 
whereas the expected positive value implies the opposite. 

Our model predicts negative skewness near the surface for large roughness heights 
but large positive skewness values for small roughness heights. This strong 
dependence is presumably unrealistic and an effect of deficiencies in the SGS model 
near the surface. As already noted above in discussing figures 7 and 8, small changes 
in the coefficient cl, which affects the dissipation rate in the lowest grid cell, may 
change the sign of the skewness. Figure 21(c) shows that the dissipation rate 
increases near the surface if z,, is increased relative to the reference value. However, 
a t  somewhat higher z-levels, the dissipation rate also increases for reduced roughness 
height, presumably owing to increased velocity fluctuations a t  these intermediate 
levels. At the surface itself, we expect from neutral Prandtl-layer theory that the 
dissipation rate varies as ( e )  = u : / ( K z ) ,  where K = 0.41 is the von Karmdn constant. 
For the case of zero mean wind, we replace u* by the minimum friction velocity C, 
and obtain from (23) 

This equation underestimates the dissipation rate except for heights that are small 
in comparison with the effective Obukhov length where buoyancy forces are 
negligible in comparison with fluctuating shear forces. At the lowest grid level, at 
z/zi = 1/64, i t  predicts the values (e)zi/w: = (0.022,0.22,2.2) for zo/zi = loT4, 
loT2), respectively. For zo/zi < the values show that the shear contribution to 
the surface dissipation rate is negligible. But for zo/zi = lop2, equation (24) does 
predict the increased dissipation rate, which even exceeds the buoyancy forcing at 
the surface. 

These findings suggest the following explanation for negative skewness at low 
levels in the LES. Large roughness heights induce excessive dissipation rates which 
cause an energy imbalance that drives downward transport of kinetic energy by 
turbulent ‘diffusion’ for equilibrium. For small values of z,,/zi, on the other hand, the 
kinetic energy produced at low levels exceeds the dissipation rate and therefore 
positive skewness arises which indicates upwards energy transport. Thus, large 
positive (negative) skewnesses near the surface are the consequence of too small (too 
large) surface dissipation rates relative to the buoyancy production rate. 

I n  view of this explanation i t  is no longer surprising that Willis & Deardorff (1974) 
find negative triple correlations near the bottom of their water tank. In  this 
experiment the effective Reynolds number is not large and viscous dissipation a t  the 
surface causes an imbalance which drives downward turbulent transport. As an 
interesting analogy we point out that negative triple moments of the normal velocity 
fluctuations are also found in the viscous layer of a pure shear boundary-layer in 
direct numerical simulations by Spalart (1988). As a consequence he finds that 
turbulent diffusion provides a source of velocity variance in the viscous layer, 
whereas it represents a sink in the fully turbulent part of the boundary layer (see 
figure 24b in Spalart 1988). In  the present LES, excessive SGS damping has the same 
effect as viscosity in the viscous layer. Our explanation is also consistent with the 
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FIGURE 22. Minimum friction velocity ii, over the convective velocity scale w, and temperature 
difference A0 over the convective temperature scale T, versus the boundary layer/roughness 
height ratio z,/z,, : __, prediction of Schumenn’s (1988) model ; - - - - approximations given by 
(23); + (01, LES results (t+ = 7) for the friction velocity (temperature difference). 

result of Mason (1987) who found that the skewness is negative for small SGS 
diffusivities but becomes positive for large values of the SGS diffusivity. This 
diffusivity determines the dissipation rate in the mixed layer for more or less constant 
surface friction. Moreover, the explanation given is consistent with the effect of c1 on 
the skewness as found in figure 8. 

Hence, the correct (positive) skewness is obtained only if a delicate balance is 
achieved between the SGS model for the mixed layer, the SGS model for the lowest 
grid-cell layer and the model for the momentum fluxes at the surface. However, the 
general results presented in this paper show that deficiencies in this respect do not 
cause the results for the bulk of the CBL to deteriorate. 

We now turn to figure 22 in which we have plotted the prediction of Schumann 
(1988) (full curves) and his approximation reported in equation (23) (dashed lines). 
The symbols for three values of the surface roughness represent the results of the 
LES. We find that the LES results agree very well with the predictions and do 
support the model’s results. In  particular, the LES results corroborate the curved 
trend shown by the full curves in figure 22. For the reference case, we obtain zi/z,, = 
1.065 x lo4, GJw, = 0.1077, At3/T, = 49.01. From the case with reduced SGS 
diffusivities for the same roughness height (for which results are shown in figures 11 
and 15b) we obtain GJw* = 0.1096, AB/T, = 48.97. The differences amount to less 
than 2 % and thus show the weak dependence of these results on model parameters. 

4. Summary and discussion 
We have presented results of a large-eddy simulation of the convective boundary 

layer obtained with quite fine resolution. The LES method uses a second-order 
closure subgrid-scale model. In  the present application this feature is of minor 
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importance because of the fine resolution, except for the inversion layer where simple 
models tend to produce excessive negative SGS heat flux. In future applications one 
should reduce the coefficient cBT in (8) to ensure small but positive SGS heat fluxes 
in the interfacial layer. The boundary condition a t  the surface applies the 
Monin-Obukhov-relationships. These relationships require stationary flow, which is 
not satisfied for the instantaneous fields and thus might be a source of errors which 
cannot be quantified from this study. However, the flow near the surface is 
approximately stationary both with respect to ensemble and conditional mean values. 
Most sensitive to details of the models are the inertia-range spectra in the interior of 
the flow, the skewness of the vertical velocity near the surface and the decay of 
gravity waves above the inversion. Our model gives approximately correct spectra 
with a set of model coefficients that is derived from the well-established inertia-range 
spectra without empirical adjustment. We have performed further simulations with 
coarser grids (Schmidt 1988) which support these findings. The mean profiles 
generally also agree very well with Deardorffs (1974) LES results which he obtained 
with much lower resolution (4OS grid cells in a domain of 5 km x 5 km x 2 km) and 
even slightly smaller SGS-diffusivities (compare table 1). This agreement, our well- 
behaved spectra and the small sensitivity to changes in the SGS coefficients show 
that our results do not suffer strongly from large finite-difference errors. The correct 
skewness is more difficult to achieve. Obviously, surface friction requires careful 
adjustment of the dissipation model parameters. Our experience in varying the 
parameter c l ,  see equation (C 6), suggests that it should be slightly increased in future 
applications. The top boundary condition, which is as proposed by Bougeault (1983) 
and Klemp & Durran (1983), has been found to be successful in avoiding spurious 
reflections of gravity waves. 

The results are in fair agreement with previous measurements and simulations as 
far as mean profiles and spectra of turbulence are concerned. With respect to 
horizontal-velocity fluctuations we have reasons to trust the results from our model 
and the measurements of Willis & Deardorff (1974) more than the later measurements 
of Deardorff & Willis (1985). Previous measurements in the atmosphere obviously 
overestimate the dissipation rate for zero mean wind. Also, the temperature variance 
seems to be smaller than commonly reported from measurements in the mixed layer. 
Our pressure fluctuations are smaller than those of Moeng & Wyngaard (1986) which 
seem to be infected by large hydrostatic oscillations in the stable layer above the 
CBL. 

Plots of velocity and temperature fields in vertical and horizontal cross-sections 
illustrate the instantaneous structure of the turbulent field. Correlation functions 
reflect large-scale and quasi-steady coherent structures which extend over the whole 
CBL from the surface up to the inversion and laterally over a diameter of 
about 22,. The autocorrelation values agree with measurements of Deardorff & Willis 
(1985), Hunt (1984) and Hunt et al. (1988). The average structure of updraughts and 
downdraughts has been obtained by conditional sampling. The sampling method 
introduced in this paper is only weakly sensitive to the sampling criterion. Owing to 
differences in the sampling definition, we cannot make direct comparisons with 
previous results obtained by conditional averaging. Smplitudes of the updraughts 
and downdraughts are generally larger than those published before. Both updraughts 
and downdraughts extend vertically over the whole CBL. The results show clearly 
that updraughts are composed of large-scale quasi-steady plumes together with 
transient rising thermals of smaller scale. This resolves earlier controversial 
discussions. By analysis of time derivatives, we determined the entrainment rate by 
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which thermals become diluted in the mixed layer. Temperature is mixed more 
quickly than vertical velocity. Updraughts and downdraughts are strongly correlated 
with quasi-steady horizontal motions near the surface and near the inversion. The 
pressure field differs considerably from a hydrostatic state both in shape and 
amplitude. Obviously, large fractions of the buoyancy forces are balanced by inertia 
forces due to large time derivatives rather than by pressure. For moderately small 
roughness heights, the convective circulation loses little momentum to the surface. 
Internal momentum fluxes are considerably larger. 

The influence of surface roughness on the CBL has been investigated by means of 
a parameter study. The surface roughness, at least for zo/zi > lop4, and also the 
stability of the layer above the CBL, seem to be more important than generally 
suggested by the apparent success of the convective scaling introduced by Deardorff 
(1970). It may be conjectured that some of the scatter shown by experimental data 
in convective scales may be eliminated if these additional parameters were taken into 
account. 

The results generally support the model proposed by Schumann (1988) except for 
his assumption concerning a hydrostatic-pressure approximation. The actual 
pressure field still drives the air in the surface layer horizontally towards the centre 
of updraughts but i t  is less important than assumed in his model. As explained, the 
smaller pressure gradient is balanced by smaller momentum fluxes so that the 
model’s concept is still successful. In  fact, the LES results support the final results 
of the simple model to a surprisingly high degree as far as the minimum friction 
velocity and heat transfer a t  the rough surface is concerned. Equation (24) gives an 
estimate of the dissipation rate for very small heights above the rough surface of a 
CBL for zero mean wind. 

I n  summary, the coherent structure of convection in the CBL can be described as 
follows. Large thermals have the highest terminal velocity. They suck smaller 
thermals from their neighbourhood into their wake which then combine to form 
quasi-steady plumes. The large updraughts extend vertically over the whole CBL 
and have distinct boundaries. The rather narrow updraughts are surrounded by large 
areas of downdraughts which form for continuity. Near the surface, polygonal spoke 
patterns seem to be realistic features of high-Rayleigh-number convection. The 
pattern is that of open cells with a sinking motion a t  the cell centre. The polygonal 
pattern is induced by wide downdraughts which suppress upward motions over most 
of the surface and drive the surface flow radially away from the centre of 
downdraughts. The fluid then converges towards lines and it appears quite natural 
that  these lines form polygonals due to competing downdraughts. Fluid heated a t  the 
surface flows, on average, towards the spikes, then along the spikes towards the hubs 
of the spoke pattern and then upwards. Small-scale plumes remote from the main 
updraughts do not merge together but die out while rising against downdraughts. 
From the hubs of the spokes, warm air rises within updraughts in an unsteady 
bubble-like manner. The cross-section of the updraughts is seldom round but, rather, 
highly convoluted with strong lateral entrainment. Large thermals formed within 
the updraughts penetrate into the stable layer and cause large-scale downward 
movements of wisps of extruded warm fluid. Both the large upward-penetrating 
thermals and the downward-moving wisps contribute to the entrainment heat flux. 
In  the stable layer, high-amplitude large-scale temperature fluctuations, for which 
the thermal dissipation rate is small, accumulate from bouncing excitation by 
updraughts. Small upward heat flux contributes to the conversion of the potential 
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energy connected with these temperature fluctuations into kinetic energy and 
subsequent mechanical dissipation. Although details of the flow state are highly 
transient and thermals form and rise like bubbles non-stationarily, the plumes are 
organized in large-scale ' quasi-steady ' patterns with timescales exceeding zi/w*. 

Busse (1978) gives a comprehensive review of thermal convection. For laminar 
Rayleigh-Be'nard convection, in the intermediate neighbourhood above the critical 
Rayleigh number, open cells or 'g-hexagons' with downward motion in the centre of 
the hexagons form if the viscosity increases with temperature, as is the case in gases. 
'Optimum theories ' explain this tendency by minimizing the mechanical dissipation 
rate for a given heat flux. In our case, the flow is turbulent and molecular viscosity 
unimportant. However, we found that downdraughts are dissipating much less than 
updraughts and the dissipation rate takes its maximum near the surface. Hence, 
open cells with wide downdraughts are dissipating less than closed cells. This is 
consistent with the spirit of the optimum theory. As a further mechanism for the 
formation of hexagonal cells, Krishnamurti (1975) has shown that open cells are 
selected by laminar Rayleigh-Be'nard convection if the mean flow contains sinking 
motion. In  our case, the mean flow is zero but, on scales of order xi, sinking motion 
prevails and this is consistent with the formation of open cells. Still, such arguments 
are heuristic and have to be viewed with reservation. 

The spoke pattern has also been found by Mason (1987) but it was not clear 
whether his results are relevant for the quasi-infinite Rayleigh numbers of the 
atmospheric CBL because of rather large SGS diffusivities. The present results seem 
to be more relevant for atmospheric cases because of the finer resolution and the 
smaller diffusivity. The spoke pattern has not been noted in the LES of Deardorff 
(1974), presumably because his plots show only cross-sections at z/zi = 0.4. Figure 22 
of Deardorff (1972), for z/zi = 0.25, exhibits a spoke pattern in the vertical velocity 
and the related temperature fluctuations. (Note that his plots show negative 
temperature deviations along the spokes because of the selected normalization 
parameters.) In his discussion, Deardorff (1972) does not mention the spoke pattern ; 
rather he identifies merging plumes. Spoke patterns are known to exist in the 
convective part of internally heated fluid layers a t  Rayleigh numbers of the order 100 
times the critical one, as clearly shown in direct numerical simulations by Grotzbach 
(1986) and related experiments cited by him. Busse (1978) reports that for Rayleigh 
numbers of the order 105-107, turbulent spoke-pattern convection is observed in 
Rayleigh-Be'nard convection experiments and represents the dominant form of 
convection over a wide range of Prandtl numbers. The pattern a t  these Rayleigh 
numbers is, however, more coherent than in our simulations. Grotzbach (1982) also 
investigated the case of Rayleigh-Be'nard convection between two isothermal no-slip 
walls a t  comparable Rayleigh numbers with the same numerical method. He did not 
see spoke patterns in his contour plots at mid-levels of the fluid layer. However, 
recent additional evaluations of his results in the lower quarter of the fluid layer 
showed that Rayleigh-Be'nard convection does also display a structure which is 
Bimilar to the spoke pattern (G. Grotzbach 1988, personal communication). But his 
spokes are not straight and appear to be distorted by downdraughts. Note that the 
Rayleigh-Be'nard convection between two isothermal no-slip walls is symmetric in 
that both warm rising and cold sinking plumes or thermals are forming at the walls, 
while our problem is asymmetric in that only warm plumes are generated by the 
boundary conditions. Because of this asymmetry, the spoke pattern is not disturbed 
by sinking cold plumes to the same extent as in Rayleigh-Be'nard convection. Also, 
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the internally heated fluid layer, and presumably most of the experiments to which 
Busse (1978) referred, show a similar asymmetry which explains the similar spoke 
pattern. 

Unfortunately, observations on the horizontal pattern of the CBL a t  high 
Rayleigh numbers, Ra > lo9, are rare. Obviously one needs simultaneous measure- 
ments a t  several positions in a horizontal plane to detect this pattern. The most 
convincing evidence on the existence of spoke-pattern convection in the CBL stems 
from the laboratory investigations of Willis & Deardorff (1979). The experiment was 
performed in a water tank filled initially with stably stratified fluid and heated from 
below. Motions were made visible by introducing milk into the lowest level of the 
water  layer. The Rayleigh number of these experiments was about lo9 and the 
turbulent Reynolds number associated with the dominant motions in the tank was 
1200. Photographs of the convective pattern as reported by Willis & Deardorff (1979) 
indicate very close similarity between these experiments and our numerical 
simulations. Radar observations of Konrad (1970) obviously identify the upper parts 
of the mixed layer with plumes penetrating into the stable layer and causing the 
rings of warm air which we see a t  z/zi = 1 in figure 14(v). The dual Doppler-radar 
observations of Frisch et al. (1976) display the flow pattern for one instant of time; 
they clearly show convergence lines at a height of 100 m separated by about 4.5 km. 
The depth of the boundary layer is not reported in that paper but can be estimated 
to amount a t  least to 1.2 km. Grossman (1982) reports on spectra of vertical-velocity 
fluctuations measured on board an aircraft flying over sea a t  low flight levels (18 m). 
He claims that he observed two significant peaks of energy, one a t  a wavelength of 
the order of a few hundred metres and a second a t  a wavelength of a few kilometres 
in an approximately 600 m deep CBL. Based on these observations he postulates 
that the CBL shows a random pattern of vortex rings at small wind speeds. He does 
not discuss the possibility of a spoke pattern but his observations also corroborate 
this pattern. Woodcock & Wyman (1947) observed the lateral displacement of smoke 
released from stationary sources a t  sea and show that these displacements are 
consistent with a convective pattern of hexagonal cells. However, Ludlam & Scorer 
(1953) classify this evidence as suggestive rather than compelling. Lyons & Pease 
(1972) observe ' steam devils ' in cold air flowing over a lake. They show photographs 
that suggest that  there were quasi-hexagonal cells elongated along the surface wind 
direction. The largest steam devils of 50-200 m in diameter rose from the vertices of 
the hexagons to a height of 500 m. Hess et al. (1988) report further observations of 
such vortices and show that they occur for -zi/L > 50 (L = Obukhov length). As 
summarized by Wilczak & Tillman (1980), Webb (1984) and Hess et al. (1988), Webb 
(1977) determined surface wind flow patterns with an array of seven wind vanes, 
placed at 100 m intervals across the mean wind direction. For unstable conditions 
with light winds, strong convergence lines, 50-100 m thick, were found. These lines are 
sometimes arranged in an irregular polygonal pattern. The spacing between each 
convergence line amounts to several kilometres. The convergent surface flow exhibits 
largest velocities near and towards the knots of the polygonal lines. Wilczak & 
Tillman (1980) have also used an array of sensors to observe the spatial structure of 
plumes a t  small heights. The separation of their sensors was too small (7 along a line 
of 100 m distance) to identify the large-scale structure. However, in light wind they 
observe meandering lines of isotherms which may be caused by the same pattern as 
observed by Webb. Hence, evidence is accumulating which suggests that the spoke 
pattern is a realistic feature of the lower half of the atmospheric CRL. 

The spoke pattern is connected with temperature fluctuations of the order 10T, 
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which amounts typically to 1 K for atmospheric cases. The amplitude of temperature 
fluctuations due to surface inhomogeneities very likely exceeds this level of 
temperature variance. Hence, we expect that  the spoke pattern is easily destroyed 
over inhomogeneous surfaces. We have found little sensitivity of the spoke pattern 
to small-scale disturbances in terms of the SGS model. But it appears likely that the 
sensitivity will be large at scales of order zi. For this reason and because of the large- 
scale measurements required, it is not surprising that the spoke pattern is not 
observed more often in field observations. 

Appendix A. Explicit form of the second-order-closure subgrid-scale 
equations 

The SOC-SGS model, equations (7)-(9), can be rewritten as 

In  this form, i t  becomes obvious that the buoyancy fluxes cause a deviation from the 
pure gradient-flux form. 

The above equations form a linear system for the fluxes and the temperature 
variance. It can be solved explicitly. Using the abbreviations 

and 

Once these fluxes are computed, the remaining flux components follow from (A 1)- 
(A 3). The temperature variance is needed explicitly for diagnostic purposes only. 
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In  order to ensure finite positive solutions, we replace the expression {l + QaT'/az)  by 
unity if it becomes less than one. This approach has also been used by Schemm & 
Lipps (1976). The fluxes are computed on a staggered grid to minimize spatial 
averaging. 

Appendix B. Determination of the SGS-model coefficients 
As shown by Lilly (1967), all essential SGS-model coefficients can be determined 

by application of inertial-convective subrange theory of isotropic turbulence (e.g. see 
Hinze 1959). However, a consistent description of the theory for determination of the 
coefficients in the SOC-model is missing. Moreover, the following analysis enables us 
to compare our model with previous proposals. The theory assumes non-buoyant 
turbulence. This is a reasonable restriction because of the small correlation between 
vertical-velocity fluctuations and temperature fluctuations a t  small scales, i.e. for 
locally isotropic turbulence. 

In  the inertial-convective subrange of isotropic turbulence, the spectra of kinetic 
energy (ui2/2) and temperature variance ( T'2)  integrated over all wavenumbers of 
magnitude k follow the well-known relationships 

E(k) = a(E)kg ,  E,(k) = P ( E ~ ) ( E ) - ~ ; ,  (B 1) 

where the dissipation rates of kinetic energy and one half the temperature variance 
are 

The coefficients CL and P of the 'three-dimensional' spectra are related to the 
coefficients a1 and PI of one-dimensional longitudinal velocity and temperature 
spectra according to Hinze (1959), equations (3-72, 3-187), by 

18 1' P = &P 3 1' (B 3) a = 

These 'one-dimensional ' coefficients have been measured many times. A recent 
summary of knowledge and new data are given by Andreas (1987). These 
measurements imply 

a = 1.6+0.02, P = 1.34k0.02. (B 4) 
As Lilly (1967), we assume that the cut-off wavenumber which separates the 

resolved from the SGS motions is x / A ,  where A is the characteristic grid spacing. We 
know that this assumption is a crude approximation in principle, where finite- 
difference approximations are being used, and more accurate approaches are known, 
see Schumann (1975). However, the extra effort does not pay off in view of the 
insensitivity of results (Grotzbach & Schumann 1979). Moreover, we assume that the 
contributions of the resolved scales to the deformation tensor can still be 
approximated by the inertial-range theory although the actual spectrum must 
deviate from the k-; form in the range of resolved wavenumbers. Again, experience 
suggests that this approximation gives reasonable results. Of course, this is because 
this part of the spectrum is weighted with a factor k2 before integration, see (B 7) and 
(B 8) below. Thus we use the spectra to determine 
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Comparing these results with the closure assumptions 

pt E"' 2- 

2 E T  = C C T -  T " 2  E = Gem- 
A '  A '  

and using the approximations 

(E"1) % (E");, (E"tT"2) % (E")'(- 2 T2), 

gives 

with the Prandtl-Kolmogorov diffusivities 

v - c  AFt, y - c AE"$ t -  Y t -  Y 

causes energy and temperature-variance production rates 

For local equilibrium turbulence, these production rates equal the respective 
dissipation rates. From this condition, and approximations similar to those in (B lo), 
we obtain with (B 7) and (B 8):  

In  the absence of buoyancy, the SOC model, (7)-(9), reduces to the gradient model, 
(B 12) and (B 13), with 

This shows that the various coefficients used to model the redistribution terms due 
to  pressure fluctuations cannot be selected independently. Comparing our model 
with those of Schemm & Lipps (1976) and Sommeria (1976) shows that they used 
cGm = E, cBm = cGT = 0, eBT = $. Thus they neglect some of the redistribution terms. 
We follow Gibson & Launder (1976) who reviewed several theoretical and 

3 
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experimental studies and recommend cGm = cB, = 0.55, cGT = cBT = 0.50. From all 
these equations, we finally obtain the numerical values as given in table 1 (see 82.2). 

The large value of the coefficient cRm suggests that  SGS turbulence is very effective 
in reducing anisotropy. Equation (B 13) implies a turbulent Prandtl number for the 
SGS 

_ -  (B 18) - cv - ’ = 0.42. 
cy  201 

A value below unity means that temperature is mixed more effectively than 
momentum by small-scale turbulence. The present turbulent Prandtl number is close 
to the value 0.4 in the models of Deardorff (1973), Sommeria (1976), and Schemm & 
Lipps (1976) and only a little larger than the value 0.39 of Grotzbach & Schumann 
(1979). 

The only coefficient which is determined by pure guesswork is cgm. This coefficient 
controls the SGS diffusion of SGS energy. Here we follow the estimates of Deardorff 
(1973), and Schemm & Lipps (1976) and set c3, = 0.2. It suggests a rather small 
turbulent Prandtl number for SGS kinetic energy, (3/5)c,/c3, = 0.25. 

For the purpose of comparison with other models, it is helpful to identify the 
coefficients in the classical Smagorinsky- type eddy-diffusivity models (for negligible 
buoyancy) 

which are related to the previous coefficients by 

The values of the various coefficients are given in table 1 where they are compared 
to those in other models. We see from this table that our model is in general 
agreement with models of Deardorff (1974,1980), Schemm & Lipps (1976), Sommeria 
(1976), Moeng (1984), and Grotzbach & Schumann (1979). However, some differences 
are notable. Our larger value for csT implies smaller SGS temperature fluctuations. 
Large values of the Smagorinsky coefficients imply strong damping of fine-scale 
resolved velocity and temperature fluctuations. Grotzbach & Schumann ( 1979) used 
the smallest Smagorinsky coefficients but for non-buoyant flows. They found little 
sensitivity of mean fields to  these coefficients. Mason (1987) applied his model with 
various values of cs and cST. In  most of his applications he used rather large 
coefficients in the Smagorinsky- type model with strong damping of the resolved 
eddies. On the other hand, Mason & Thomson (1987) obtain most convincing results 
for the neutral planetary boundary layer with cs = 0.12. 

Appendix C. The effective lengthscale 
The lengthscale 1 is set to A ,  the mean grid size, inside the domain. Near the 

surface, one expects that the effective lengthscale is smaller and limited by Prandtl’s 
mixing length KZ, where K is the von KarmBn constant ( K  = 0.41). By comparing 
(B 19) with the common mixing-length model, we see that the effective limitation for 
the present set of model coefficients would be 

1 = min ( A ,  KZ/C,). (C 1 )  
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However, for cubical mesh cells, this minimum function, or related functions as used 
by Mason &, Callen (1986) and Mason (1987), has little or no effect because it implies 
1 = A everywhere, even in the lowest mesh cell where z = A / 2  because cs < ~ / 2 .  This 
is different in Mason’s applications because he uses vertically refined meshes near the 
surface. 

But, there is another reason to limit the lengthscale. Note that near the surface, 
the SGS contribution to buoyancy is large. Thus we can assume that the shear 
contributions are relatively small for zero mean flow. Close to the wall, for local 
equilibrium between buoyancy forcing and energy dissipation, the model equations 
(5) and (A 9) predict 

From measurements of Kaimal et al. (1976), we know that the total vertical velocity 
variance near the surface closely follows the relationship 

The SGS velocity variance should stay less than this result. This requires a limitation 
of 1 

3 2 7z 3.3c,, x .  
2 4 ( 1 - ~ ~ , ) ~ , ,  

‘Rm 1 
In fact, the SGS variance should stay considerably below the total variance. 
Therefore, we use 

1 = min ( A ,  clz). 

Equation (C5) shows that this limitation should depend mainly on the SGS 
coefficient for dissipation, c,,. The final value of c1 has, however, to be determined 
empirically. Our preliminary simulations lead us to suggest cL = c,, in most cases 
unless stated otherwise. 

Alternatively, we could have followed Deardorff (1980) and Moeng (1984) who 
increased chm in the lowest grid cell by a ‘wall-effect’ factor of up to 3.9 to  prevent 
E” from becoming unduly large there. Such an increase of c,, would have the same 
effect as a reduction of I ,  but the present approach offers at least some formal 
guidance for this procedure. 

(C 6) 

Appendix D. Monin-Obukhov boundary conditions 
The Monin-Obukhov relationships are used to determine the friction velocit,y u*, 

i.e. the square root of the kinematic surface stress, for given horizontal velocity in the 
first interior mesh cell. One should be aware of the limitations of these relationships 
(homogeneity and stationarity of the surface layer) but no better simple alternative 
is known and the effects of surface friction are relatively small for the mixed layer. 
The actual relationships are as proposed by Paulson (1970) and Dyer (1974) : 
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#,m(6) = (1--16c)-;, q5h(lJ = (1-16<)-;, K = 0.41. (D 6) 

These equations apply to the unstable case, i.e. for z/L < 0, where the Obukhov 
length L is negative. For given velocity magnitude U(z)  = (a: + a$(z) in the first grid 
cell a t  z = A2/2, we determine u*, the friction velocity, by inverting (D 1 )  together 
with (D 3) and (D 4). Actually, by adding the small convective velocity 0.O7(PgQs A z ) ~ ,  
connected with the grid size, we increase U ( z )  to avoid singular solutions for zero 
flow velocities. A Newton iteration inverts the equations to sufficient accuracy within 
three iterations. Then the surface stresses are given by 

The surface temperature Os = ‘ (2 , )  is required for diagnostic purposes only, and 
computed from (D 2) for a given temperature T(z)  at the level x = Az/2. Gradients 
of horizontal velocity and temperature at the surface have to be known in order to 
compute the shear production rate of kinetic energy and gradient production rate of 
temperature variance from products of fluxes and gradients. They are computed 
from 

where Az is the vertical mesh spacing. 
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